Seismic‐Wave Modeling in the Presence of Surface Topography in 2D General Anisotropic Media by a Curvilinear Grid Finite‐Difference Method

Abstract In this article, the curvilinear grid finite‐difference method is extended to simulate seismic‐wave propagation in 2D general anisotropic media with surface topography. In order to better describe the surface topography, the geological model is discretized in curvilinear coordinates by body‐conforming grids whose grid lines align with the surface topography. To implement the free‐surface boundary condition, we derive the analytical relationship between derivatives of velocity components for anisotropic media and use the compact finite‐difference scheme and traction‐image method. We fully validate the proposed method using complex topographic surface models and compare the synthetic waveforms with the spectral‐element method. The results show a good agreement between the two methods, confirming the validity of our method.

[1]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[2]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[3]  Wei Zhang,et al.  Traction image method for irregular free surface boundaries in finite difference seismic wave simulation , 2006 .

[4]  R. J. Apsel,et al.  On the Green's functions for a layered half-space. Part II , 1983 .

[5]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[6]  S. Crampin,et al.  Seismic anisotropy - the state of the art , 1984 .

[7]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[8]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[9]  Don L. Anderson,et al.  Elastic wave propagation in layered anisotropic media , 1961 .

[10]  B. Kennett,et al.  Seismic Wave Propagation in Stratified Media , 1983 .

[11]  Vadim Lisitsa,et al.  Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity ‡ , 2010 .

[12]  Robert J. Geller,et al.  Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: one-dimensional case , 1998 .

[13]  D. Gottlieb,et al.  Dissipative two-four methods for time-dependent problems , 1976 .

[14]  J. White Computed waveforms in transversely isotropic media , 1982 .

[15]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[16]  Géza Seriani,et al.  A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media , 1992 .

[17]  Wei Zhang,et al.  Three-dimensional anisotropic seismic wave modelling in spherical coordinates by a collocated-grid finite-difference method , 2012 .

[18]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[19]  Xuewei Liu,et al.  3-D acoustic wave equation forward modeling with topography , 2007 .

[20]  Nanxun Dai,et al.  Wave propagation in heterogeneous, porous media: A velocity‐stress, finite‐difference method , 1995 .

[21]  J. Kristek,et al.  3D Heterogeneous Staggered-grid Finite-difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities , 2002 .

[22]  R. Maccormack,et al.  The Effect of Viscosity in Hypervelocity Impact Cratering , 2003 .

[23]  R. G. Payton,et al.  Elastic Wave Propagation in Transversely Isotropic Media , 1983 .

[24]  Bengt Fornberg,et al.  The pseudospectral method; accurate representation of interfaces in elastic wave calculations , 1988 .

[25]  H. Takenaka,et al.  A numerical analysis of seismic waves for an anisotropic fault zone , 2006 .

[26]  Antonios Vafidis,et al.  Elastic wave propagation using fully vectorized high order finite-difference algorithms , 1992 .

[27]  I. Opršal,et al.  Elastic finite-difference method for irregular grids , 1999 .

[28]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[29]  R. Hixon,et al.  Evaluation of a High-Accuracy MacCormack-Type Scheme Using Benchmark Problems , 1998 .

[30]  Xiaofei Chen,et al.  A systematic and efficient method of computing normal modes for multilayered half-space , 1993 .

[31]  J. Rial,et al.  Modelling elastic‐wave propagation in inhomogeneous anisotropic media by the pseudo‐spectral method , 1995 .

[32]  J. Dorman,et al.  Two-dimensional, three-component wave propagation in a transversely isotropic medium with arbitrary-orientation-finite-element modeling , 2000 .

[33]  Wei Zhang,et al.  Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids , 2014 .

[34]  Michael Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - IV. Anisotropy , 2007 .

[35]  N. Christensen,et al.  The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites , 1984 .

[36]  Peter Mora,et al.  Finite differences on minimal grids , 1994 .

[37]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[38]  Zhuang He,et al.  Two-dimensional seismic wave simulation in anisotropic media by non-staggered finite difference method , 2009 .

[39]  E. Kanasewich,et al.  ELASTIC WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC MEDIA USING FINITE DIFFERENCES1 , 1990 .

[40]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[41]  Modeling 3D surface topography by finite‐difference method: Kobe‐JMA Station Site, Japan, Case Study , 1996 .

[42]  Wei Zhang,et al.  Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics , 2014 .

[43]  D. Appelö,et al.  A stable finite difference method for the elastic wave equation on complex geometries with free surfaces , 2007 .

[44]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[45]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[46]  David C. Booth,et al.  Shear-wave polarizations near the North Anatolian Fault – II. Interpretation in terms of crack-induced anisotropy , 1985 .

[47]  Eli Turkel,et al.  A fourth-order accurate finite-difference scheme for the computation of elastic waves , 1986 .

[48]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .

[49]  W. Bond,et al.  The mathematics of the physical properties of crystals , 1943 .

[50]  Shu-Huei Hung,et al.  Modelling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multidomain pseudo-spectral method , 1998 .

[51]  Bent O. Ruud,et al.  3-D finite-difference elastic wave modeling including surface topography , 1998 .

[52]  M. Baan,et al.  Seismic anisotropy in exploration and reservoir characterization: An overview , 2010 .

[53]  Stuart Crampin,et al.  Evaluation of anisotropy by shear‐wave splitting , 1985 .

[54]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[55]  Wei Zhang,et al.  Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids , 2012 .

[56]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[57]  Wang Xiuming,et al.  Modeling of elastic wave propagation on a curved free surface using an improved finite-difference algorithm , 2004 .

[58]  Haiqiang Lan,et al.  Three-Dimensional Wave-Field Simulation in Heterogeneous Transversely Isotropic Medium with Irregular Free Surface , 2011 .

[59]  D. Komatitsch,et al.  Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .

[60]  Bernard A. Chouet,et al.  A free-surface boundary condition for including 3D topography in the finite-difference method , 1997, Bulletin of the Seismological Society of America.