A Novel Parameter Estimation Method for Muskingum Model Using New Newton-Type Trust Region Algorithm

Parameters estimation of Muskingum model is very significative in both exploitation and utilization of water resources and hydrological forecasting. The optimal results of parameters directly affect the accuracy of flood forecasting. This paper considers the parameters estimation problem of Muskingum model from the following two aspects. Firstly, based on the general trapezoid formulas, a class of new discretization methods including a parameter to approximate Muskingum model is presented. The accuracy of these methods is second-order, when . Particularly, if we choose , the accuracy of the presented method can be improved to third-order. Secondly, according to the Newton-type trust region algorithm, a new Newton-type trust region algorithm is given to obtain the parameters of Muskingum model. This method can avoid high dependence on the initial parameters. The average absolute errors (AAE) and the average relative errors (ARE) of the proposed algorithm of parameters estimation for Muskingum model are 8.208122 and 2.462438%, respectively, where . It is shown from these results that the presented algorithm has higher forecasting accuracy and wider practicability than other methods.

[1]  David Stephenson,et al.  Direct optimization of Muskingum routing coefficients , 1979 .

[2]  Jiang Tie-bing A NEW GENETIC SIMULATED ANNEALING ALGORITHM FOR FLOOD ROUTING MODEL , 2004 .

[3]  Kangling,et al.  A NEW GENETIC SIMULATED ANNEALING ALGORITHM FOR FLOOD ROUTING MODEL , 2004 .

[4]  AIJIA OUYANG,et al.  Estimating parameters of Muskingum Model using an Adaptive Hybrid PSO Algorithm , 2014, Int. J. Pattern Recognit. Artif. Intell..

[5]  S. Mohan,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .

[6]  M. A. Gill Flood routing by the Muskingum method , 1978 .

[7]  Alvaro A. Aldama Least-Squares Parameter Estimation for Muskingum Flood Routing , 1990 .

[8]  Sergio E. Serrano The Theis Solution in Heterogeneous Aquifers , 1997 .

[9]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[10]  Lin Qiu,et al.  Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution , 2012 .

[11]  Masoud Ahookhosh,et al.  A hybrid of adjustable trust-region and nonmonotone algorithms for unconstrained optimization , 2014 .

[12]  Jiancang Xie,et al.  Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm , 2010 .

[13]  Morteza Kimiaei,et al.  A new adaptive trust-region method for system of nonlinear equations , 2014 .

[14]  Z. Geem Parameter Estimation for the Nonlinear Muskingum Model Using the BFGS Technique , 2006 .

[15]  David J. Evans,et al.  Generalized trapezoidal formulas for parabolic equations , 1999, Int. J. Comput. Math..

[16]  Reza Barati,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm , 2011 .

[17]  Liang-Cheng Chang,et al.  Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .

[18]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[19]  Xiaohua Yang,et al.  Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm , 2007 .