An approximating C2 non-stationary subdivision scheme
暂无分享,去创建一个
[1] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[2] Carolina Vittoria Beccari,et al. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..
[3] Jiwen Zhang. C-curves: an extension of cubic curves , 1996 .
[4] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[5] Joe D. Warren,et al. A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..
[6] P. C. Das,et al. A subdivision algorithm for trigonometric spline curves , 2002, Comput. Aided Geom. Des..
[7] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] O. Rioul. Simple regularity criteria for subdivision schemes , 1992 .
[9] Shahid S. Siddiqi,et al. A new three-point approximating C2 subdivision scheme , 2007, Appl. Math. Lett..
[10] Malcolm A. Sabin,et al. A family of subdivision schemes with cubic precision , 2008, Comput. Aided Geom. Des..
[11] R. Riesenfeld. On Chaikin's algorithm , 1975 .
[12] Carolina Vittoria Beccari,et al. An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control , 2007, Comput. Aided Geom. Des..
[13] M. F. Hassan,et al. Ternary and three-point univariate subdivision schemes , 2001 .
[14] Tom Lyche,et al. Control curves and knot insertion for trigonometric splines , 1995, Adv. Comput. Math..
[15] P. Lancaster. Curve and surface fitting , 1986 .
[16] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[17] P. Shunmugaraj,et al. A non-stationary subdivision scheme for curve interpolation , 2008 .