An approximating C2 non-stationary subdivision scheme

We present a 3-point C^2 approximating non-stationary subdivision scheme for designing curves. The weights of the masks of the scheme are defined in terms of some values of trigonometric B-spline basis functions. The scheme has some interesting properties and it is compared with the 2-point and 3-point schemes generating uniform trigonometric spline curves of order 3 and 5. The comparison and the performance of the scheme are demonstrated by examples.

[1]  D. Levin,et al.  Analysis of asymptotically equivalent binary subdivision schemes , 1995 .

[2]  Carolina Vittoria Beccari,et al.  A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..

[3]  Jiwen Zhang C-curves: an extension of cubic curves , 1996 .

[4]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[5]  Joe D. Warren,et al.  A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..

[6]  P. C. Das,et al.  A subdivision algorithm for trigonometric spline curves , 2002, Comput. Aided Geom. Des..

[7]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  O. Rioul Simple regularity criteria for subdivision schemes , 1992 .

[9]  Shahid S. Siddiqi,et al.  A new three-point approximating C2 subdivision scheme , 2007, Appl. Math. Lett..

[10]  Malcolm A. Sabin,et al.  A family of subdivision schemes with cubic precision , 2008, Comput. Aided Geom. Des..

[11]  R. Riesenfeld On Chaikin's algorithm , 1975 .

[12]  Carolina Vittoria Beccari,et al.  An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control , 2007, Comput. Aided Geom. Des..

[13]  M. F. Hassan,et al.  Ternary and three-point univariate subdivision schemes , 2001 .

[14]  Tom Lyche,et al.  Control curves and knot insertion for trigonometric splines , 1995, Adv. Comput. Math..

[15]  P. Lancaster Curve and surface fitting , 1986 .

[16]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[17]  P. Shunmugaraj,et al.  A non-stationary subdivision scheme for curve interpolation , 2008 .