The Utility of Accurate Mass and LC Elution Time Information in the Analysis of Complex Proteomes

[1]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[2]  Roman A. Zubarev,et al.  Accuracy Requirements for Peptide Characterization by Monoisotopic Molecular Mass Measurements , 1996 .

[3]  Ruedi Aebersold,et al.  High throughput protein characterization by automated reverse‐phase chromatography/electrospray tandem mass spectrometry , 1998, Protein science : a publication of the Protein Society.

[4]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[5]  Richard D. Smith,et al.  Accurate mass multiplexed tandem mass spectrometry for high-throughput polypeptide identification from mixtures. , 2000, Analytical chemistry.

[6]  Richard D. Smith,et al.  Utility of accurate mass tags for proteome-wide protein identification. , 2000, Analytical chemistry.

[7]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[8]  Magnus Palmblad,et al.  Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry. , 2002, Analytical chemistry.

[9]  Ronald J Moore,et al.  Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ronald J. Moore,et al.  Toward a Human Blood Serum Proteome , 2002, Molecular & Cellular Proteomics.

[11]  Arthur R Salomon,et al.  An automated matrix-assisted laser desorption/ionization quadrupole Fourier transform ion cyclotron resonance mass spectrometer for "bottom-up" proteomics. , 2003, Analytical chemistry.

[12]  Gordon A Anderson,et al.  Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. , 2003, Analytical chemistry.

[13]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[14]  Richard D. Smith,et al.  Integration of electrokinetic-based multidimensional separation/concentration platform with electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry for proteome analysis of Shewanella oneidensis. , 2003, Analytical chemistry.

[15]  Bernhard Spengler,et al.  De novo sequencing, peptide composition analysis, and composition-based sequencing: A new strategy employing accurate mass determination by fourier transform ion cyclotron resonance mass spectrometry , 2004, Journal of the American Society for Mass Spectrometry.

[16]  A simple and inexpensive approach to interfacing high‐performance liquid chromatography and matrix‐assisted laser desorption/ionization‐time of flight‐mass spectrometry , 2004, Proteomics.

[17]  John R Yates,et al.  Applicability of Tandem Affinity Purification MudPIT to Pathway Proteomics in Yeast*S , 2004, Molecular & Cellular Proteomics.

[18]  Ronald J Moore,et al.  Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. , 2004, Analytical chemistry.

[19]  B. Cargile,et al.  An alternative to tandem mass spectrometry: isoelectric point and accurate mass for the identification of peptides. , 2004, Analytical chemistry.

[20]  Kevin K. Anderson,et al.  Estimating Probabilities of Peptide Assignments to LC-FTICR-MS Observations , 2004, METMBS.

[21]  Eberhard Durr,et al.  Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture , 2004, Nature Biotechnology.

[22]  Gordon A Anderson,et al.  High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. , 2004, Analytical chemistry.

[23]  Ronald J Moore,et al.  Multidimensional proteome analysis of human mammary epithelial cells. , 2004, Journal of proteome research.

[24]  Magnus Palmblad,et al.  Protein identification by liquid chromatography-mass spectrometry using retention time prediction. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[25]  Richard D. Smith,et al.  Nanoscale proteomics : Liquid chromatography-mass spectrometry , 2004 .

[26]  N. Dohmae,et al.  Characterization of a digested protein complex with quantitative aspects: An approach based on accurate mass chromatographic analysis with Fourier transform‐ion cyclotron resonance mass spectrometry , 2004, Proteomics.

[27]  Richard D. Smith,et al.  Ultra-sensitive, high throughput and quantitative proteomics measurements , 2005 .

[28]  Ronald J. Moore,et al.  Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: The human mammary epithelial cell proteome , 2005, Proteomics.

[29]  Frank J. Groen,et al.  Foundations of probabilistic inference with uncertain evidence , 2005, Int. J. Approx. Reason..

[30]  C. Ihling,et al.  Proteome analysis of Escherichia coli using high‐performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry , 2005, Proteomics.