Div First-Order System LL* (FOSLL*) for Second-Order Elliptic Partial Differential Equations

The first-order system LL* (FOSLL*) approach for general second-order elliptic partial differential equations was proposed and analyzed in [Z. Cai et al., SIAM J. Numer. Anal., 39 (2001), pp. 1418--1445], in order to retain the full efficiency of the $L^2$ norm first-order system least-squares (FOSLS) approach while exhibiting the generality of the inverse-norm FOSLS approach. The FOSLL* approach of Cai et al. was applied to the div-curl system with added slack variables, and hence it is quite complicated. In this paper, we apply the FOSLL* approach to the div system and establish its well-posedness. For the corresponding finite element approximation, we obtain a quasi-optimal a priori error bound under the same regularity assumption as the standard Galerkin method, but without the restriction to sufficiently small mesh size. Unlike the FOSLS approach, the FOSLL* approach does not have a free a posteriori error estimator. We then propose an explicit residual error estimator and establish its reliability a...

[1]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[2]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[3]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[4]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[5]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[6]  Pavel B. Bochev,et al.  On Least-Squares Finite Element Methods for the Poisson Equation and Their Connection to the Dirichlet and Kelvin Principles , 2005, SIAM J. Numer. Anal..

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Ricardo H. Nochetto,et al.  DESIGN AND CONVERGENCE OF AFEM IN H(DIV) , 2007 .

[9]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[10]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[11]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[12]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[13]  Zhiqiang Cai,et al.  Optimal Error Estimate for the Div Least-squares Method with Data f∈L2 and Application to Nonlinear Problems , 2010, SIAM J. Numer. Anal..

[14]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[15]  Dennis C. Jespersen,et al.  A least squares decomposition method for solving elliptic equations , 1977 .

[16]  R. B. Kellogg,et al.  Least Squares Methods for Elliptic Systems , 1985 .

[17]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[18]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[19]  Thomas A. Manteuffel,et al.  First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..