Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
暂无分享,去创建一个
D. A. Humphreys | N. W. Eidietis | E. J. Strait | M. A. Van Zeeland | Thomas C Jernigan | A. Loarte | Jose Ramon Martin-Solis | J. C. Wesley | Nicolas Jc Commaux | J. R. Martin-Solis | E. M. Hollmann | N. H. Brooks | D. L. Rudakov | R. A. Moyer | V. A. Izzo | A. Loarte | N. Commaux | P. Parks | T. Jernigan | J. Wesley | E. Strait | M. A. Zeeland | J. Boedo | D. Rudakov | R. Moyer | N. Brooks | M. van Zeeland | E. Hollmann | M. Austin | N. Eidietis | V. Izzo | P. B. Parks | Jose Armando Boedo | J. Yu | C. Tsui | Max E Austin | J. H. Yu | A. N. James | C. Tsui | J. M. Muñoz-Burgos | J.H. Yu | A. James | J. Martín-Solís | D. Humphreys | J. Muñoz-Burgos | M. E. Austin | A. N. James
[1] D. A. Humphreys,et al. Visible imaging and spectroscopy of disruption runaway electrons in DIII-D , 2013 .
[2] J. Röpcke,et al. Applications of quantum cascade lasers in plasma diagnostics: a review , 2012 .
[3] D. A. Humphreys,et al. Control of post-disruption runaway electron beams in DIII-Da) , 2012 .
[4] D. A. Humphreys,et al. Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D , 2011 .
[5] D. Humphreys,et al. Plasma–surface interactions during tokamak disruptions and rapid shutdowns , 2011 .
[6] J. R. Martin-Solis,et al. Magnetic energy flows during the current quench and termination of disruptions with runaway current plateau formation in JET and implications for ITER , 2011 .
[7] L. Lao,et al. Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER , 2011 .
[8] D. A. Humphreys,et al. Measurements of hard x-ray emission from runaway electrons in DIII-D , 2011 .
[9] V. Leonov,et al. 1 ITR / P 1-32 Characterization of Runaway Electrons in ITER , 2010 .
[10] Ahmed Hassanein,et al. Self-consistent analysis of the effect of runaway electrons on plasma facing components in ITER , 2009 .
[11] F. Saint-Laurent,et al. Control of Runaway Electron Beams on Tore Supra , 2008 .
[12] J. Manickam,et al. Chapter 3: MHD stability, operational limits and disruptions , 2007 .
[13] D. A. Humphreys,et al. Active control for stabilization of neoclassical tearing modes , 2005 .
[14] F. Andersson,et al. Current dynamics during disruptions in large tokamaks. , 2004, Physical review letters.
[15] M. G. O'Mullane,et al. Atomic data for modelling fusion and astrophysical plasmas , 2002 .
[16] J. L. Luxon,et al. A design retrospective of the DIII-D tokamak , 2002 .
[17] Howard A. Scott,et al. Cretin—a radiative transfer capability for laboratory plasmas , 2001 .
[18] Paul B. Parks,et al. Avalanche runaway growth rate from a momentum-space orbit analysis , 1999 .
[19] ITER Physics Expert Group on Disruptions, Plasma C,et al. Chapter 3: MHD stability, operational limits and disruptions , 1999 .
[20] M. Rosenbluth,et al. Theory for avalanche of runaway electrons in tokamaks , 1997 .
[21] N. Inoue,et al. HIGH-CURRENT RUNAWAY ELECTRON BEAM IN A TOKAMAK PLASMA , 1991 .
[22] Martin J. Berger,et al. Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons , 1985 .
[23] C. Celata,et al. Cyclotron radiation as a diagnostic tool for tokamak plasmas , 1977 .