Invariant metrics, contractions and nonlinear matrix equations

In this paper we consider the semigroup generated by the self-maps on the open convex cone of positive definite matrices of translations, congruence transformations and matrix inversion that includes symplectic Hamiltonians and show that every member of the semigroup contracts any invariant metric distance inherited from a symmetric gauge function. This extends the results of Bougerol for the Riemannian metric and of Liverani–Wojtkowski for the Thompson part metric. A uniform upper bound of the Lipschitz contraction constant for a member of the semigroup is given in terms of the minimum eigenvalues of its determining matrices. We apply this result to a variety of nonlinear equations including Stein and Riccati equations for uniqueness and existence of positive definite solutions and find a new convergence analysis of iterative algorithms for the positive definite solution depending only on the least contraction coefficient for the invariant metric from the spectral norm.

[1]  G. Birkhoff Extensions of Jentzsch’s theorem , 1957 .

[2]  George B. Kleindorfer,et al.  CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM. , 1969 .

[3]  P. Bushell Hilbert's metric and positive contraction mappings in a Banach space , 1973 .

[4]  P. Bushell,et al.  On solutions of the matrix equation T'AT = A2 , 1974 .

[5]  Maciej P. Wojtkowski,et al.  Invariant families of cones and Lyapunov exponents , 1985, Ergodic Theory and Dynamical Systems.

[6]  Maciej P. Wojtkowski,et al.  Measure theoretic entropy of the system of hard spheres , 1988, Ergodic Theory and Dynamical Systems.

[7]  J. Engwerda On the existence of a positive definite solution of the matrix equation X + A , 1993 .

[8]  T. D. Morley,et al.  Positive solutions to X = A−BX-1 B∗ , 1990 .

[9]  Carlangelo Liverani,et al.  Ergodicity in Hamiltonian Systems , 1992, math/9210229.

[10]  A. Ran,et al.  Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A*X-1A = Q , 1993 .

[11]  P. Bougerol Kalman filtering with random coefficients and contractions , 1993 .

[12]  Carlangelo Liverani,et al.  GENERALIZATION OF THE HILBERT METRIC TO THE SPACE OF POSITIVE DEFINITE MATRICES , 1994 .

[13]  J. Hiriart-Urruty,et al.  Sensitivity analysis of all eigenvalues of a symmetric matrix , 1995 .

[14]  B. Levy,et al.  Hermitian solutions of the equation X = Q + NX−1N∗ , 1996 .

[15]  Xingzhi Zhan,et al.  Computing the Extremal Positive Definite Solutions of a Matrix Equation , 1996, SIAM J. Sci. Comput..

[16]  Chun-Hua Guo,et al.  Iterative solution of two matrix equations , 1999, Math. Comput..

[17]  Finsler metrics on symmetric cones , 2000 .

[18]  Demetrio Stojanoff,et al.  Geometrical significance of the Löwner-Heinz inequality , 2000 .

[19]  Strict contractions of symmetric cones , 2000 .

[20]  Y. Lim,et al.  Lie semigroups with triple decompositions , 2000 .

[21]  Jimmie D. Lawson,et al.  The Geometric Mean, Matrices, Metrics, and More , 2001, Am. Math. Mon..

[22]  K. Neeb Compressions of infinite-dimensional bounded symmetric domains , 2001 .

[23]  Chun-Hua Guo,et al.  Convergence Rate of an Iterative Method for a Nonlinear Matrix Equation , 2001, SIAM J. Matrix Anal. Appl..

[24]  Shu-Fang Xu,et al.  Perturbation analysis of the maximal solution of the matrix equation X+A∗X−1A=P , 2001 .

[25]  Beatrice Meini,et al.  Efficient computation of the extreme solutions of X + A*X-1A = Q and X - A*X-1A = Q , 2001, Math. Comput..

[26]  André C. M. Ran,et al.  On the nonlinear matrix equation X+A∗F(X)A=Q: solutions and perturbation theory , 2002 .

[27]  André C. M. Ran,et al.  On an Iteration Method for Solving a Class of Nonlinear Matrix Equations , 2001, SIAM J. Matrix Anal. Appl..

[28]  R. Bhatia On the exponential metric increasing property , 2003 .

[29]  Dario Bini,et al.  Solving nonlinear matrix equations arising in Tree-Like stochastic processes , 2003 .

[30]  Yongdo Lim,et al.  Birkhoff formula for conformal compressions of symmetric cones , 2003 .

[31]  Xin-Guo Liu,et al.  On the positive definite solutions of the matrix equations Xs±ATX−tA=In☆ , 2003 .

[32]  Moody T. Chu,et al.  On the semigroup of standard symplectic matrices and its applications , 2004 .

[33]  Frank Uhlig,et al.  Improved methods and starting values to solve the matrix equations X±A*X-1A=I iteratively , 2004, Math. Comput..

[34]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[35]  Yongdo Lim,et al.  The Matrix Golden Mean and Its Applications to Riccati Matrix Equations , 2006, SIAM J. Matrix Anal. Appl..

[36]  Beatrice Meini,et al.  Nonlinear matrix equations and structured linear algebra , 2006 .

[37]  Wen-Wei Lin,et al.  Convergence Analysis of Structure-Preserving Doubling Algorithms for Riccati-Type Matrix Equations , 2006, SIAM J. Matrix Anal. Appl..

[38]  Jimmie D. Lawson,et al.  The Symplectic Semigroup and Riccati Differential Equations , 2006 .

[39]  Dario Bini,et al.  On the solution of algebraic Riccati equations arising in fluid queues , 2006 .

[40]  Y. Lim,et al.  Solving symmetric matrix word equations via symmetric space machinery , 2006 .

[41]  R. Bhatia,et al.  Riemannian geometry and matrix geometric means , 2006 .

[42]  V. Hasanov,et al.  On two perturbation estimates of the extreme solutions to the equations X ± A*X−1A = Q☆ , 2006 .

[43]  Jimmie D. Lawson,et al.  A Birkhoff contraction formula with applications to Riccati Equations , 2007, 2007 46th IEEE Conference on Decision and Control.

[44]  Yongdo Lim,et al.  Bushell's equations and polar decompositions , 2009 .