Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy–galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h^(−1) Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg^2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ_8 and Ω_m (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ_8(Ω_m/0.25)^(0.57) = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed n_s = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ_8, Ω_m, H_0, w_(de) and ∑m_ν become 30–80 per cent tighter than with CMB data alone, since our data break several parameter degeneracies.

[1]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[2]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[3]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering & Lensing - II. Fisher Matrix Analysis , 2012, 1207.0004.

[4]  S. More,et al.  Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.

[5]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[6]  O. Lahav,et al.  On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model , 2012, 1203.2616.

[7]  J. Rhodes,et al.  COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING , 2012, 1202.6491.

[8]  S. Harmeling,et al.  Image analysis for cosmology: results from the GREAT10 Galaxy Challenge , 2012, 1202.5254.

[9]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations - III. Cosmological measurements and interpretation , 2012, 1202.0092.

[10]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations – II. Fitting techniques , 2012, 1202.0091.

[11]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[12]  P. Mcdonald,et al.  Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.

[13]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.

[14]  Jeffrey M. Kubo,et al.  THE SDSS CO-ADD: COSMIC SHEAR MEASUREMENT , 2011, 1111.6622.

[15]  D. Schlegel,et al.  Seeing in the dark – II. Cosmic shear in the Sloan Digital Sky Survey , 2011, 1112.3143.

[16]  Rachel Mandelbaum,et al.  Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy–galaxy lensing , 2011, 1110.4107.

[17]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[18]  Alexie Leauthaud,et al.  Precision simulation of ground-based lensing data using observations from space , 2011, 1107.4629.

[19]  R. Mandelbaum,et al.  Photometric redshift requirements for lens galaxies in galaxy–galaxy lensing analyses , 2011, 1107.1395.

[20]  B. Reid,et al.  Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.

[21]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[22]  M. Blanton,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.

[23]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[24]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[25]  A. Leauthaud,et al.  A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER , 2011, 1103.2077.

[26]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[27]  F. Marin THE LARGE-SCALE THREE-POINT CORRELATION FUNCTION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES , 2010, 1011.4530.

[28]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[29]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[30]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[31]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[32]  Earl Lawrence,et al.  THE COYOTE UNIVERSE. III. SIMULATION SUITE AND PRECISION EMULATOR FOR THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0912.4490.

[33]  R. Mandelbaum,et al.  Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.

[34]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[35]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[36]  R. Mandelbaum,et al.  Precision cluster mass determination from weak lensing , 2009, 0911.4972.

[37]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[38]  Eiichiro Komatsu,et al.  Galaxy-CMB and galaxy-galaxy lensing on large scales: Sensitivity to primordial non-Gaussianity , 2009, 0910.1361.

[39]  A. Szalay,et al.  The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample , 2009, 0908.2598.

[40]  M. Bethge,et al.  Results of the GREAT08 Challenge?: an image analysis competition for cosmological lensing: Results o , 2009, 0908.0945.

[41]  U. Seljak,et al.  Impact of scale dependent bias and nonlinear structure growth on the integrated Sachs-Wolfe effect: Angular power spectra , 2009, 0905.2408.

[42]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[43]  R. Smith Covariance of cross-correlations: towards efficient measures for large-scale structure , 2008, 0810.1960.

[44]  P. Schneider,et al.  Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17 , 2008, 0805.3459.

[45]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[46]  B. Reid,et al.  CONSTRAINING THE LUMINOUS RED GALAXY HALO OCCUPATION DISTRIBUTION USING COUNTS-IN-CYLINDERS , 2008, 0809.4505.

[47]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[48]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[49]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[50]  A. Zentner,et al.  Self-calibration of tomographic weak lensing for the physics of baryons to constrain dark energy , 2007, 0709.4029.

[51]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[52]  M. Blanton,et al.  SDSS galaxy clustering: luminosity and colour dependence and stochasticity , 2007, astro-ph/0702584.

[53]  Durham,et al.  The galaxy power spectrum: precision cosmology from large-scale structure? , 2007, 0708.1517.

[54]  R. Nichol,et al.  Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys , 2007, astro-ph/0701671.

[55]  R. Smith,et al.  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[56]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[57]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[58]  D. Eisenstein,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2006, astro-ph/0604362.

[59]  D. Eisenstein,et al.  A robust estimator of the small-scale galaxy correlation function , 2006, astro-ph/0612103.

[60]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[61]  S. White,et al.  Assembly bias in the clustering of dark matter haloes , 2006, astro-ph/0611921.

[62]  D. Thompson,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006, astro-ph/0609044.

[63]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[64]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[65]  J. Brinkmann,et al.  Density profiles of galaxy groups and clusters from SDSS galaxy–galaxy weak lensing , 2006, astro-ph/0605476.

[66]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[67]  J. Tinker,et al.  From Galaxy-Galaxy Lensing to Cosmological Parameters , 2005, astro-ph/0511580.

[68]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[69]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[70]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[71]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[72]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[73]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[74]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[75]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[76]  J. Brinkmann,et al.  SDSS galaxy bias from halo mass-bias relation and its cosmological implications , 2004, astro-ph/0406594.

[77]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[78]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[79]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.

[80]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[81]  A. Szalay,et al.  Galaxy–galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors , 2004, astro-ph/0403255.

[82]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[83]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[84]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[85]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[86]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[87]  P. Hall,et al.  A Measurement of Weak Lensing by Large-Scale Structure in Red-Sequence Cluster Survey Fields , 2002, astro-ph/0202285.

[88]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[89]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[90]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[91]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[92]  G. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001, astro-ph/0107431.

[93]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[94]  Naoki Yasuda,et al.  Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105545.

[95]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[96]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[97]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000, astro-ph/0003008.

[98]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[99]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[100]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[101]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[102]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[103]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[104]  R. Scoccimarro Transients from initial conditions: a perturbative analysis , 1997, astro-ph/9711187.

[105]  P. Schneider,et al.  A NEW MEASURE FOR COSMIC SHEAR , 1997, astro-ph/9708143.

[106]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[107]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[108]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[109]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[110]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[111]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[112]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[113]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .