High Strain Composites

This review paper provides an introduction to high strain composites, a field of research that encompasses structures that undergo large deformations through composite materials capable of large strains. Unique qualities of the field are defined and its history is presented from beginnings in deformable metallic structures to current high strain composites using carbon fibers. High strain composites are presented as two classes: those with relatively stiff matrix materials and those with soft or softenable matrix materials. For each class, a survey and references are provided for materials, testing, mechanics, and examples of past structures. While there are broader applications, the paper focuses on high strain composites used in deployable space structures.

[1]  Bhavani V. Sankar,et al.  A direct micromechanics method for analysis of failure initiation of plain weave textile composites , 2006 .

[2]  Sergio Pellegrino,et al.  Carbon Fibre Reinforced Plastic Tape Springs , 2004 .

[3]  Kirtland Afb,et al.  Large Strain Behavior of Thin Unidirectional Composite Flexures , 2010 .

[4]  Thomas W. Murphey,et al.  Synchronous Deployed Solar Sail Concept Demonstration , 2008 .

[5]  Peter A. Warren,et al.  Experimental Characterization of Lightweight Strain Energy Deployment Hinges , 2005 .

[6]  Stephen L. Ogin,et al.  Finite element simulation of woven fabric composites , 2004 .

[7]  Richard Schapery On the characterization of nonlinear viscoelastic materials , 1969 .

[8]  Thomas W. Murphey,et al.  Large Strain Four-Point Bending of Thin Unidirectional Composites , 2015 .

[9]  Thomas W. Murphey,et al.  Four Point Bending of Thin Unidirectional Composite Laminas , 2013 .

[10]  Lars Herbeck,et al.  Development and Test of Deployable Ultra-Lightweight CFRP-Booms for a Solar Sail , 2000 .

[11]  D. J. Johnson,et al.  Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres , 2001 .

[12]  R. M. Christensen Chapter IV – Mechanical Properties and Approximate Transform Inversion , 1982 .

[13]  Zheng-ming Huang On a general constitutive description for the inelastic and failure behavior of fibrous laminates––Part II: Laminate theory and applications , 2002 .

[14]  Richard Schapery,et al.  Time-Dependent Compressive Strength of Unidirectional Viscoelastic Composite Materials , 2002 .

[15]  Thomas W. Murphey,et al.  A MATERIAL STRUCTURAL PERFORMANCE INDEX FOR STRAIN BASED DEPLOYABLE TRUSSES , 2004 .

[16]  Simon D. Guest,et al.  EQUILIBRIUM AND STABILITY ANALYSIS OF COMPOSITE SLIT TUBES , 2000 .

[17]  M. Burghammer,et al.  Direct observation of nanocrystallite buckling in carbon fibers under bending load. , 2005, Physical review letters.

[18]  O Soykasap,et al.  Micromechanical Models for Bending Behavior of Woven Composites , 2006 .

[19]  S. Pellegrino Biaxial Bending Failure Locus for Woven-Thin-Ply Carbon Fibre Reinforced Plastic Structures , 2005 .

[21]  Joseph N. Footdale,et al.  Special Session: Deployable Structures with Quadrilateral Reticulations , 2009 .

[22]  Matthew Santer,et al.  Time-Dependent Behavior of Thin CFRP Flexures , 2012 .

[23]  Sergio Pellegrino,et al.  New concept for ultra-thin deployable structures , 2005 .

[24]  David Lichodziejewski,et al.  An Inflatable Rigidizable Truss Structure Based on New Sub-Tg Polyurethane Composites , 2002 .

[25]  Thomas W. Murphey,et al.  Synchronous Deployed Solar Sail Subsystem Design Concept , 2007 .

[26]  Steven M. Arnold,et al.  Micromechanics-Based Modeling of Woven Polymer Matrix Composites , 2003 .

[27]  Douglas S. Adams,et al.  Analysis of the Lenticular Jointed MARSIS Antenna Deployment , 2006 .

[28]  Sergio Pellegrino,et al.  Folding of fiber composites with a hyperelastic matrix , 2012 .

[29]  Sergio Pellegrino,et al.  BI-STABLE COMPOSITE SHELLS , 2000 .

[30]  Joseph N. Footdale,et al.  Design and Testing of Self-Deploying Membrane Optic Support Structure Using Rollable Composite Tape Springs , 2013 .

[31]  Thomas W. Murphey,et al.  Highly Compact Wrapped-Gore Deployable Reflector , 2011 .

[32]  J. E. Dyer,et al.  Deployable truss structure advanced technology , 1986 .

[33]  Thomas W. Murphey,et al.  Large Deformation Bending of Thin Composite Tape Spring Laminates , 2013 .

[34]  Paul M. Weaver,et al.  Environmental effects on thermally induced multistability in unsymmetric composite laminates , 2009 .

[35]  T. Murphey,et al.  Development of Deployable Apertures for CubeSats , 2010 .

[36]  Thomas W. Murphey,et al.  Experimental and Numerical Analysis of a DECSMAR Structure's Deployment and Deployed Performance , 2007 .

[38]  Thomas W. Murphey,et al.  Deployable Trusses Based on Large Rotation Flexure Hinges , 2010 .

[39]  Steven A. Lane,et al.  Overview of the Innovative Space-Based Radar Antenna Technology Program , 2011 .

[40]  Thomas W. Murphey,et al.  Development of an Elastically Deployable Boom for Tensioned Planar Structures , 2007 .

[41]  Ö. Soykasap,et al.  Analysis of plain-weave composites , 2011 .

[42]  M. Lake,et al.  A Review of Classical Fiber Microbuckling Analytical Solutions for use with Elastic Memory Composites , 2006 .

[43]  A. A. Woods,et al.  Wrap-rib antenna concept development overview , 1983 .

[44]  Guy Gendron,et al.  Mechanical Behavior of a Triaxial Woven Fabric Composite , 2000 .

[45]  Sergio Pellegrino,et al.  Thin-shell deployable reflectors with collapsible stiffeners: part 1 - approach , 2006 .

[46]  Sungeun K. Jeon,et al.  Design and analysis of a meter-class CubeSat boom with a motor-less deployment by bi-stable tape springs , 2011 .

[47]  M. M. Mikulas,et al.  Inflatable Deployable Space Structures Technology Summary , 1998 .

[48]  Rajiv A. Naik,et al.  Analysis of Woven and Braided Fabric-Reinforced Composites , 1996 .

[49]  Kirtland Afb,et al.  Structural Design of a CubeSat-Based Diffractive Optic Telescope , 2011 .

[50]  C. Galiotis,et al.  Compressional behaviour of carbon fibres , 1990 .

[51]  O. Soykasap Finite element analysis of plain weave composites for flexural failure , 2009 .

[52]  Andrew C. Hansen,et al.  A three-constituent multicontinuum theory for woven fabric composite materials , 2003 .

[53]  Lee D. Peterson,et al.  Dimensional Repeatability of an Elastically Folded Composite Hinge for Deployed Spacecraft Optics , 2002 .

[54]  M.W. Thomson,et al.  The AstroMesh deployable reflector , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[55]  Daniel C. Mattis,et al.  The New Science of Strong Materials, or, Why You Don’t Fall Through the Floor , 1985 .

[56]  Michael R Wisnom,et al.  Size effects in the testing of fibre-composite materials , 1999 .

[57]  Mohammed A. Zikry,et al.  A micromechanical model for damage progression in woven composite systems , 2004 .

[58]  G. G. Herzl Tubular spacecraft booms , 1970 .

[59]  Martin M. Mikulas,et al.  SOME MICROMECHANICS CONSIDERATIONS OF THE FOLDING OF RIGIDIZABLE COMPOSITE MATERIALS , 2001 .

[60]  Kirtland Afb,et al.  Stowage and Deployment Strength of a Rollable Composite Shell Reflector , 2011 .

[61]  M. Wisnom,et al.  Constrained buckling tests show increasing compressive strain to failure with increasing strain gradient , 1997 .

[62]  Douglas S. Adams,et al.  Lenticular Jointed Antenna Deployment Anomaly and Resolution Onboard the Mars Express Spacecraft , 2009 .

[63]  Michael Notter,et al.  Folding Large Antenna Tape Spring , 2008 .

[64]  Hiroyuki Hamada,et al.  Tensile Properties of Carbon Fiber Triaxial Woven Fabric Composites , 1992 .

[65]  David M. Murphy,et al.  Scalable Solar-Sail Subsystem Design Concept , 2003 .

[66]  L. Herbeck,et al.  LIGHTWEIGHT DEPLOYABLE BOOMS: DESIGN, MANUFACTURE, VERIFICATION, AND SMART MATERIALS APPLICATION , 2004 .

[67]  R. Christensen Theory of viscoelasticity : an introduction , 1971 .

[68]  Thomas W. Murphey,et al.  Development of Concentrated Strain Based Deployable Truss Structures , 2006 .

[70]  C. P. Chen,et al.  Analysis of high-loss viscoelastic composites , 1993 .

[71]  Emil V. Ardelean,et al.  Verification of a Retractable Solar Sail in a Thermal-Vacuum Environment , 2010 .

[72]  Stephen E. Scarborough,et al.  Rigidizable Materials for use in Gossamer Space Inflatable Structures , 2001 .

[73]  Mary L. Bowden,et al.  Space Station solar array deployment mast , 1992 .

[74]  J. Fager,et al.  Large-aperture expandable truss microwave antenna , 1969 .

[75]  O. Soykasap,et al.  Homogenized tensile and bending properties of plain weave single‐Ply E‐glass/epoxy , 2012 .

[76]  Erwin E. Kempke,et al.  Evaluation of one type of foldable tube , 1965 .

[77]  Hartmut Runge,et al.  Large SAR Membrane Antennas with Lightweight Deployable Booms , 2005 .

[78]  Sergio Pellegrino,et al.  Technical assessment of high accuracy large space borne reflector antenna (TAHARA) - reflector concepts analysis , 2004 .

[79]  S. Kyriakides,et al.  On the Effect of Loading Rate on the Compressive Strength of an AS4/PEEK Composite , 1998 .

[80]  Sergio Pellegrino,et al.  Shap e Recovery of Viscoelastic Deployable Structures , 2010 .

[81]  Omer Soykasap,et al.  Development of Full-Scale Ultrathin Shell Reflector , 2012 .

[82]  M. Lake,et al.  Elastic Memory Composite Microbuckling Mechanics: Closed-Form Model with Empirical Correlation , 2007 .

[83]  Kirtland Afb,et al.  Design Developments of a Non-Planar Deployable Structure , 2010 .

[84]  Joseph N. Footdale,et al.  Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs , 2014 .

[85]  Sergio Pellegrino,et al.  A NOVEL ACTUATED COMPOSITE TAPE-SPRING FOR DEPLOYABLE STRUCTURES , 2004 .

[86]  H Schönbacher,et al.  Compilation of radiation damage test data : part III: materials used around high-energy accelerators , 1982 .

[87]  N. Chretien,et al.  HOMOGENIZATION OF A PLAIN WEAVE TEXTILE COMPOSITE , 2002 .

[88]  Michael J. Wirthlin,et al.  The Cibola Flight Experiment , 2015, TRETS.

[89]  Şükrü Karakaya,et al.  Analysis and testing of ultrathin shell 2 m diameter reflector demonstrator , 2013 .

[90]  E. H. Mansfield The Bending and Stretching of Plates , 1963 .

[91]  Thomas W. Murphey,et al.  Development of Deployable Elastic Composite Shape Memory Alloy Reinforced (DECSMAR) Structures , 2006 .

[92]  Michael E. McEachen Validation of SAILMAST Technology and Modeling by Ground Testing of a Full-Scale Flight Article , 2010 .

[93]  Sergio Pellegrino,et al.  Folding of woven composite structures , 2005 .

[94]  Sergio Pellegrino,et al.  Visco elastic Effects in Tape-Springs , 2011 .