Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting

This book explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. "Dynamical Systems in Neuroscience" presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum - or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience.

[1]  J. R. Clay,et al.  Excitability of the squid giant axon revisited. , 1998, Journal of neurophysiology.

[2]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[3]  M. Golubitsky,et al.  Patterns of Oscillation in Coupled Cell Systems , 2002 .

[4]  Teresa Ree Chay,et al.  Endogenous Bursting Patterns in Excitable Cells , 1988 .

[5]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[6]  J M Bekkers,et al.  Properties of voltage‐gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[7]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[8]  Nancy Kopell,et al.  Coupled Oscillators and Locomotion by Fish , 1986 .

[9]  I. Stewart,et al.  Coupled nonlinear oscillators and the symmetries of animal gaits , 1993 .

[10]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[11]  A. Alonso,et al.  Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. , 1993, Journal of neurophysiology.

[12]  F S Werblin,et al.  Inwardly rectifying potassium conductance can accelerate the hyperpolarizing response in retinal horizontal cells. , 1995, Journal of neurophysiology.

[13]  W. K. Luk,et al.  Synchronization and sensitivity enhancement of the Hodgkin-Huxley neurons due to inhibitory inputs , 2000, Biological Cybernetics.

[14]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[15]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[16]  Thomas Erneux,et al.  Slow Passage Through a Hopf Bifurcation: From Oscillatory to Steady State Solutions , 1993, SIAM J. Appl. Math..

[17]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. , 1999, Journal of neurophysiology.

[18]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[19]  Andrey Shilnikov,et al.  Mechanism of bistability: tonic spiking and bursting in a neuron model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[21]  Eugene M. Izhikevich,et al.  Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models , 1999, IEEE Trans. Neural Networks.

[22]  Frank C. Hoppensteadt,et al.  Classification of bursting Mappings , 2004, Int. J. Bifurc. Chaos.

[23]  J T Williams,et al.  Inward rectification of resting and opiate-activated potassium currents in rat locus coeruleus neurons , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  A. Alonso,et al.  Biophysical Properties and Slow Voltage-Dependent Inactivation of a Sustained Sodium Current in Entorhinal Cortex Layer-II Principal Neurons , 1999, The Journal of general physiology.

[25]  A. Winfree The geometry of biological time , 1991 .

[26]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[27]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[28]  J. Bower,et al.  The Book of GENESIS , 1998, Springer New York.

[29]  Eugene M. Izhikevich,et al.  Phase Equations for Relaxation Oscillators , 2000, SIAM J. Appl. Math..

[30]  Z. Jian,et al.  A Novel Bursting Mechanism of Type A Neurons in Injured Dorsal Root Ganglia , 2004, Neurosignals.

[31]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[32]  Bard Ermentrout Dynamical Consequences of Fast-Rising, Slow-Decaying Synapses in Neuronal Networks , 2003, Neural Computation.

[33]  J. Neu Coupled Chemical Oscillators , 1979 .

[34]  M. Bickford,et al.  Distinct firing properties of higher order thalamic relay neurons. , 2003, Journal of neurophysiology.

[35]  N. Kopell Chains of coupled oscillators , 1998 .

[36]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[37]  J. W. Hastings,et al.  A PERSISTENT DIURNAL RHYTHM OF LUMINESCENCE IN GONYAULAX POLYEDRA , 1958 .

[38]  Bard Ermentrout,et al.  Linearization of F-I Curves by Adaptation , 1998, Neural Computation.

[39]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[40]  Eugene M. Izhikevich,et al.  Resonate-and-fire neurons , 2001, Neural Networks.

[41]  V. Arnold Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .

[42]  van Vreeswijk C Analysis of the asynchronous state in networks of strongly coupled oscillators , 2000, Physical review letters.

[43]  D. Noble,et al.  Applications of Hodgkin-Huxley equations to excitable tissues. , 1966, Physiological reviews.

[44]  E. Izhikevich Phase models with explicit time delays , 1998 .

[45]  Frank C. Hoppensteadt,et al.  Synaptic organizations and dynamical properties of weakly connected neural oscillators , 1996, Biological Cybernetics.

[46]  Carson C. Chow,et al.  Dynamics of Spiking Neurons with Electrical Coupling , 2000, Neural Computation.

[47]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[48]  E. Marder,et al.  Dynamic clamp: computer-generated conductances in real neurons. , 1993, Journal of neurophysiology.

[49]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[50]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .

[51]  J. Keener,et al.  Phase locking of biological clocks , 1982, Journal of mathematical biology.

[52]  T I Tóth,et al.  All thalamocortical neurones possess a T‐type Ca2+‘window’ current that enables the expression of bistability‐mediated activities , 1999, The Journal of physiology.

[53]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[54]  G. Ermentrout n:m Phase-locking of weakly coupled oscillators , 1981 .

[55]  Carl van Vreeswijk,et al.  Patterns of Synchrony in Neural Networks with Spike Adaptation , 2001, Neural Computation.

[56]  R. Miura,et al.  Subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[57]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[58]  H. L. Bryant,et al.  Spike initiation by transmembrane current: a white‐noise analysis. , 1976, The Journal of physiology.

[59]  J. Rinzel,et al.  Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. , 1980, The Journal of physiology.

[60]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[61]  D. A. Brown,et al.  Kinetic and pharmacological properties of the M‐current in rodent neuroblastoma x glioma hybrid cells. , 1992, The Journal of physiology.

[62]  Eve Marder,et al.  Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks , 1994, Journal of Computational Neuroscience.

[63]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[64]  Robert M. Miura,et al.  Perturbation techniques for models of bursting electrical activity in pancreatic b-cells , 1992 .

[65]  A. Shilnikov,et al.  HOMOCLINIC BIFURCATIONS OF PERIODIC ORBITS EN A ROUTE FROM TONIC-SPIKING TO BURSTING IN NEURON MODELS , 2004 .

[66]  F. Hoppensteadt,et al.  Modeling and Simulation in Medicine and the Life Sciences , 2001 .

[67]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[68]  G. de Vries,et al.  Multiple Bifurcations in a Polynomial Model of Bursting Oscillations , 1998 .

[69]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[70]  H R Parri,et al.  Sodium Current in Rat and Cat Thalamocortical Neurons: Role of a Non-Inactivating Component in Tonic and Burst Firing , 1998, The Journal of Neuroscience.

[71]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[72]  J. Rinzel,et al.  Dissection of a model for neuronal parabolic bursting , 1987, Journal of mathematical biology.

[73]  Alain Destexhe,et al.  Bursting oscillations from a homoclinic tangency in a time delay system , 1993 .

[74]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[75]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[76]  A. Reyes,et al.  Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. , 1993, Journal of neurophysiology.

[77]  Nancy Kopell,et al.  Rapid synchronization through fast threshold modulation , 1993, Biological Cybernetics.

[78]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[79]  Eve Marder,et al.  Reduction of conductance-based neuron models , 1992, Biological Cybernetics.

[80]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[81]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[82]  E. Puil,et al.  Isoflurane attenuates resonant responses of auditory thalamic neurons. , 1997, Journal of neurophysiology.

[83]  T. Erneux,et al.  Understanding bursting oscillations as periodic slow passages through bifurcation and limit points , 1993 .

[84]  John Rinzel,et al.  Analysis of bursting in a thalamic neuron model , 1994, Biological Cybernetics.

[85]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[86]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[87]  M Steriade,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. , 1984, Journal of neurophysiology.

[88]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[89]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[90]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[91]  D Kleinfeld,et al.  Supralinear Summation of Synaptic Inputs by an Invertebrate Neuron: Dendritic Gain Is Mediated by an “Inward Rectifier” K+ Current , 1999, The Journal of Neuroscience.

[92]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[93]  H. Robinson,et al.  Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics. , 2004, Journal of neurophysiology.

[94]  G. Ermentrout,et al.  Oscillator death in systems of coupled neural oscillators , 1990 .

[95]  Brent Doiron,et al.  Ghostbursting: A Novel Neuronal Burst Mechanism , 2004, Journal of Computational Neuroscience.

[96]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[97]  H Bostock,et al.  Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. , 1997, Journal of neurophysiology.

[98]  Germán Mato,et al.  Asynchronous States and the Emergence of Synchrony in Large Networks of Interacting Excitatory and Inhibitory Neurons , 2003, Neural Computation.

[99]  Alfred J. Szumski,et al.  Biophysics and Physiology of Excitable Membranes , 1973 .

[100]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[101]  Eugene M. Izhikevich,et al.  Weakly Connected Quasi-periodic Oscillators, FM Interactions, and Multiplexing in the Brain , 1999, SIAM J. Appl. Math..

[102]  J. Guckenheimer,et al.  Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos , 1991 .

[103]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[104]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[105]  X. Wang Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons , 1999, Neuroscience.

[106]  G. Ermentrout Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators , 1992 .

[107]  J Rinzel,et al.  Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. , 1999, Journal of neurophysiology.

[108]  John Guckenheimer,et al.  Bifurcation, Bursting, and Spike Frequency Adaptation , 1997, Journal of Computational Neuroscience.

[109]  M. Pirchio,et al.  Postnatal Development of Membrane Properties and δ Oscillations in Thalamocortical Neurons of the Cat Dorsal Lateral Geniculate Nucleus , 1997, The Journal of Neuroscience.

[110]  Germán Mato,et al.  Electrical Synapses and Synchrony: The Role of Intrinsic Currents , 2003, The Journal of Neuroscience.

[111]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[112]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[113]  J. J. Collins,et al.  A group-theoretic approach to rings of coupled biological oscillators , 1994, Biological Cybernetics.

[114]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[115]  J. Rinzel On repetitive activity in nerve. , 1978, Federation proceedings.

[116]  Tim Kiemel,et al.  Relative Phase Behavior of Two Slowly Coupled Oscillators , 1993, SIAM J. Appl. Math..

[117]  G. Bard Ermentrout,et al.  Losing Amplitude and Saving Phase , 1986 .

[118]  Maureen E. Rush,et al.  The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxley models , 1995, Bulletin of Mathematical Biology.

[119]  H. Daido Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function , 1996 .

[120]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[121]  Asaf Keller,et al.  Membrane Bistability in Olfactory Bulb Mitral Cells , 2001, The Journal of Neuroscience.

[122]  John Guckenheimer,et al.  An Improved Parameter Estimation Method for Hodgkin-Huxley Models , 1999, Journal of Computational Neuroscience.

[123]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[124]  J. Byrne,et al.  Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. , 1991, Journal of neurophysiology.

[125]  Georgi S. Medvedev,et al.  Reduction of a model of an excitable cell to a one-dimensional map , 2005 .

[126]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[127]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[128]  R. Werman,et al.  The Ionic Mechanisms of Hyperpolarizing Responses in Lobster Muscle Fibers , 1961, The Journal of general physiology.

[129]  David Terman,et al.  Properties of a Bursting Model with Two Slow Inhibitory Variables , 1993, SIAM J. Appl. Math..

[130]  Nicolas Brunel,et al.  Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[132]  I B Levitan,et al.  A cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15 , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[133]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[134]  M. Rosenblum,et al.  Detecting direction of coupling in interacting oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[136]  Nancy Kopell,et al.  Subcellular oscillations and bursting , 1986 .

[137]  N. Brunel,et al.  From subthreshold to firing-rate resonance. , 2003, Journal of neurophysiology.

[138]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[139]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[140]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[141]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[142]  Martin Golubitsky,et al.  An unfolding theory approach to bursting in fast–slow systems , 2001 .

[143]  E. Izhikevich Resonance and selective communication via bursts in neurons having subthreshold oscillations. , 2002, Bio Systems.

[144]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.

[145]  Charles J. Wilson,et al.  Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. , 1994, Journal of neurophysiology.

[146]  Bertil Hille,et al.  Voltage-Gated Ion Channels and Electrical Excitability , 1998, Neuron.

[147]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[148]  B. Amini,et al.  Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. , 1999, Journal of neurophysiology.

[149]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[150]  Bard Ermentrout,et al.  Learning of Phase Lags in Coupled Neural Oscillators , 1994, Neural Computation.

[151]  J. Rinzel,et al.  On different mechanisms for membrane potential bursting , 1986 .

[152]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[153]  Guy Katriel,et al.  Stability of synchronized oscillations in networks of phase-oscillators , 2003 .

[154]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[155]  G. Ermentrout,et al.  Multiple pulse interactions and averaging in systems of coupled neural oscillators , 1991 .

[156]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[157]  Y. Yaari,et al.  Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons , 2001, The Journal of Neuroscience.

[158]  John R. Huguenard,et al.  Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids , 2004, Nature.

[159]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[160]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[161]  J. Rubin,et al.  Geometric Singular Perturbation Analysis of Neuronal Dynamics , 2002 .

[162]  M. Devor,et al.  Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials. , 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[163]  J. Rinzel,et al.  Analysis of an autonomous phase model for neuronal parabolic bursting , 1995, Journal of mathematical biology.

[164]  N. Kopell,et al.  Anti-phase solutions in relaxation oscillators coupled through excitatory interactions , 1995, Journal of mathematical biology.

[165]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[166]  D. Prince,et al.  Major Differences in Inhibitory Synaptic Transmission onto Two Neocortical Interneuron Subclasses , 2003, The Journal of Neuroscience.

[167]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[168]  R. Plant,et al.  Bifurcation and resonance in a model for bursting nerve cells , 1981, Journal of mathematical biology.

[169]  M. Steriade Neuronal Substrates of Sleep and Epilepsy , 2003 .

[170]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[171]  Anatoli N. Lopatin,et al.  Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification , 1994, Nature.

[172]  R. Harris-Warrick,et al.  Multiple mechanisms of bursting in a conditional bursting neuron , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[173]  I B Levitan,et al.  Augmentation of bursting pacemaker activity by egg-laying hormone in Aplysia neuron R15 is mediated by a cyclic AMP-dependent increase in Ca2+ and K+ currents. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[174]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[175]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[176]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[177]  David Terman,et al.  Analysis of clustered firing patterns in synaptically coupled networks of oscillators , 2000, Journal of mathematical biology.

[178]  R. FitzHugh,et al.  Anodal excitation in the Hodgkin-Huxley nerve model. , 1976, Biophysical journal.

[179]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[180]  Mark Pernarowski,et al.  Fast Subsystem Bifurcations in a Slowly Varying Liénard System Exhibiting Bursting , 1994, SIAM J. Appl. Math..

[181]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[182]  J. D. Del Castillo,et al.  The Electrical and Mechanical Activity of the Esophageal Cell of Ascaris lumbricoides , 1967, The Journal of general physiology.

[183]  A. Alonso,et al.  Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. , 1993, Journal of neurophysiology.

[184]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[185]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[186]  G. Ermentrout,et al.  Parabolic bursting in an excitable system coupled with a slow oscillation , 1986 .

[187]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[188]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[189]  A. Winfree Patterns of phase compromise in biological cycles , 1974 .

[190]  R. Traub,et al.  Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons. , 1998, Journal of neurophysiology.

[191]  D. A. McCormick,et al.  Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus , 1995, Neuroscience.

[192]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[193]  Eugene M. Izhikevich,et al.  “Subcritical Elliptic Bursting of Bautin Type ” (Izhikevich (2000b)). The following , 2022 .

[194]  Nancy Kopell,et al.  Waves and synchrony in networks of oscillators of relaxation and non-relaxation type , 1995 .

[195]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[196]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[197]  J. White,et al.  Channel noise in neurons , 2000, Trends in Neurosciences.

[198]  R. Morris Foundations of cellular neurophysiology , 1996 .

[199]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[200]  R Llinás,et al.  Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[201]  G. Ermentrout,et al.  Synchrony, stability, and firing patterns in pulse-coupled oscillators , 2002 .

[202]  G. Ermentrout,et al.  Amplitude response of coupled oscillators , 1990 .

[203]  Stephen Coombes,et al.  Dynamics of Strongly Coupled Spiking Neurons , 2000, Neural Computation.

[204]  M. Steriade Neocortical cell classes are flexible entities , 2004, Nature Reviews Neuroscience.

[205]  C. Meunier,et al.  How shunting inhibition affects the discharge of lumbar motoneurones: a dynamic clamp study in anaesthetized cats , 2004, The Journal of physiology.

[206]  T. A. Kinard,et al.  Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances. , 1999, Biophysical journal.