Performance dependences on multiplication layer thickness for InP/InGaAs avalanche photodiodes based on time domain modeling
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] M. Jamal Deen,et al. Time-domain modeling of InP/InGaAs avalanche photodiodes , 2001, SPIE OPTO.
[3] D. G. Knight,et al. Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery , 1990 .
[4] R. B. Emmons,et al. Avalanche photodiode frequency response , 1967 .
[5] I. M. Naqvi,et al. Effects of time dependence of multiplication process on avalanche noise , 1973 .
[6] M. J. Deen,et al. Modeling of two-dimensional gain profiles for InP-InGaAs avalanche photodiodes with a stochastic approach , 1999 .
[7] M. Jamal Deen,et al. Two-dimensional gain profiles of InP/InGaAs separate absorption, grading, charge, and multiplication avalanche photodiodes modeled by a simplified stochastic approach , 2000 .
[8] J.C. Campbell,et al. Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz , 2001, IEEE Photonics Technology Letters.
[9] C. Ma,et al. Characterization and modelling of SAGCM InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications , 1997 .
[10] M. J. Deen,et al. Effect of mesa overgrowth on low-frequency noise in planar separate absorption, grading, charge, and multiplication avalanche photodiodes , 1999 .
[11] Paul P. Webb,et al. Planar InGaAs/InP avalanche photodiode fabrication using vapor-phase epitaxy and silicon implantation techniques , 1988 .
[12] Mark A. Itzler,et al. Planar bulk InP avalanche photodiode design for 2.5 and 10 Gb/s applications , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).
[13] R. Kuchibhotla,et al. Delta-doped avalanche photodiodes for high bit-rate lightwave receivers , 1991 .
[14] Nikhil Ranjan Das,et al. Low-bias performance of avalanche photodetector. A time-domain approach , 2001 .
[15] J. Vukusic. Optical Fiber Communications: Principles and Practice , 1986 .
[16] Shyh Wang,et al. Fundamentals of semiconductor theory and device physics , 1989 .
[17] M. J. Deen,et al. Low-frequency noise in single growth planar separate absorption, grading, charge, and multiplication avalanche photodiodes , 2000 .
[18] Bahaa E. A. Saleh,et al. Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space , 1992 .
[19] R. B. Emmons,et al. Avalanche‐Photodiode Frequency Response , 1967 .
[20] K. Takahashi,et al. New approach to the frequency response analysis of an InGaAs avalanche photodiode , 1988 .
[21] Kyung-Sook Hyun,et al. Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode , 1995 .
[22] Chungho Lee,et al. Quasistatic Approximation for Semiconductor Avalanches , 1970 .
[23] Joe C. Campbell,et al. Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .
[24] M. J. Deen,et al. Frequency response and modeling of resonant-cavity separate absorption, charge, and multiplication avalanche photodiodes , 2001 .
[25] M. Katzman,et al. Optical communication systems , 1985, Proceedings of the IEEE.
[26] John E. Bowers,et al. Frequency response of avalanche photodetectors with separate absorption and multiplication layers , 1996 .
[27] R. Mcintyre. Multiplication noise in uniform avalanche diodes , 1966 .
[28] J.C. Campbell,et al. Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.
[29] T. Baird,et al. Temperature measurements of separate absorption, grading, charge, and multiplication (SAGCM) InP/InGaAs avalanche photodiodes (APD's) , 1993, IEEE Photonics Technology Letters.
[30] Mark A. Itzler,et al. Manufacturable planar bulk-InP avalanche photodiodes for 10 Gb/s applications , 1999, 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009).
[31] Mark A. Itzler,et al. High-performance, manufacturable avalanche photodiodes for 10 Gb/s optical receivers , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).
[32] M. J. Deen,et al. Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling , 2001 .
[33] J.C. Campbell,et al. Quantum-dot resonant-cavity separate absorption, charge, and multiplication avalanche photodiode operating at 1.06 μm , 1998, IEEE Photonics Technology Letters.
[34] L. E. Tarof. Planar InP/InGaAs avalanche photodetector with gain-bandwidth product in excess of 100 GHz , 1991 .
[35] M. Jamal Deen,et al. Theoretical approach to frequency response of resonant-cavity avalanche photodiodes , 2001, SPIE OPTO.
[36] S. Forrest,et al. A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode , 2002, IEEE Photonics Technology Letters.
[37] Bahaa E. A. Saleh,et al. Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.
[38] J. N. Hollenhorst. Frequency response theory for multilayer photodiodes , 1990 .
[39] Nick Doran,et al. Optical Communication Systems , 1984 .
[40] Bahaa E. A. Saleh,et al. Time and frequency response of avalanche photodiodes with arbitrary structure , 1992 .
[41] Joe C. Campbell,et al. Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption "grading" and multiplication regions , 1985 .
[42] M. J. Deen,et al. A simplified approach to time-domain modeling of avalanche photodiodes , 1998 .