Performance dependences on multiplication layer thickness for InP/InGaAs avalanche photodiodes based on time domain modeling

InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  M. Jamal Deen,et al.  Time-domain modeling of InP/InGaAs avalanche photodiodes , 2001, SPIE OPTO.

[3]  D. G. Knight,et al.  Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery , 1990 .

[4]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .

[5]  I. M. Naqvi,et al.  Effects of time dependence of multiplication process on avalanche noise , 1973 .

[6]  M. J. Deen,et al.  Modeling of two-dimensional gain profiles for InP-InGaAs avalanche photodiodes with a stochastic approach , 1999 .

[7]  M. Jamal Deen,et al.  Two-dimensional gain profiles of InP/InGaAs separate absorption, grading, charge, and multiplication avalanche photodiodes modeled by a simplified stochastic approach , 2000 .

[8]  J.C. Campbell,et al.  Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz , 2001, IEEE Photonics Technology Letters.

[9]  C. Ma,et al.  Characterization and modelling of SAGCM InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications , 1997 .

[10]  M. J. Deen,et al.  Effect of mesa overgrowth on low-frequency noise in planar separate absorption, grading, charge, and multiplication avalanche photodiodes , 1999 .

[11]  Paul P. Webb,et al.  Planar InGaAs/InP avalanche photodiode fabrication using vapor-phase epitaxy and silicon implantation techniques , 1988 .

[12]  Mark A. Itzler,et al.  Planar bulk InP avalanche photodiode design for 2.5 and 10 Gb/s applications , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[13]  R. Kuchibhotla,et al.  Delta-doped avalanche photodiodes for high bit-rate lightwave receivers , 1991 .

[14]  Nikhil Ranjan Das,et al.  Low-bias performance of avalanche photodetector. A time-domain approach , 2001 .

[15]  J. Vukusic Optical Fiber Communications: Principles and Practice , 1986 .

[16]  Shyh Wang,et al.  Fundamentals of semiconductor theory and device physics , 1989 .

[17]  M. J. Deen,et al.  Low-frequency noise in single growth planar separate absorption, grading, charge, and multiplication avalanche photodiodes , 2000 .

[18]  Bahaa E. A. Saleh,et al.  Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space , 1992 .

[19]  R. B. Emmons,et al.  Avalanche‐Photodiode Frequency Response , 1967 .

[20]  K. Takahashi,et al.  New approach to the frequency response analysis of an InGaAs avalanche photodiode , 1988 .

[21]  Kyung-Sook Hyun,et al.  Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode , 1995 .

[22]  Chungho Lee,et al.  Quasistatic Approximation for Semiconductor Avalanches , 1970 .

[23]  Joe C. Campbell,et al.  Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[24]  M. J. Deen,et al.  Frequency response and modeling of resonant-cavity separate absorption, charge, and multiplication avalanche photodiodes , 2001 .

[25]  M. Katzman,et al.  Optical communication systems , 1985, Proceedings of the IEEE.

[26]  John E. Bowers,et al.  Frequency response of avalanche photodetectors with separate absorption and multiplication layers , 1996 .

[27]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[28]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[29]  T. Baird,et al.  Temperature measurements of separate absorption, grading, charge, and multiplication (SAGCM) InP/InGaAs avalanche photodiodes (APD's) , 1993, IEEE Photonics Technology Letters.

[30]  Mark A. Itzler,et al.  Manufacturable planar bulk-InP avalanche photodiodes for 10 Gb/s applications , 1999, 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009).

[31]  Mark A. Itzler,et al.  High-performance, manufacturable avalanche photodiodes for 10 Gb/s optical receivers , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[32]  M. J. Deen,et al.  Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling , 2001 .

[33]  J.C. Campbell,et al.  Quantum-dot resonant-cavity separate absorption, charge, and multiplication avalanche photodiode operating at 1.06 μm , 1998, IEEE Photonics Technology Letters.

[34]  L. E. Tarof Planar InP/InGaAs avalanche photodetector with gain-bandwidth product in excess of 100 GHz , 1991 .

[35]  M. Jamal Deen,et al.  Theoretical approach to frequency response of resonant-cavity avalanche photodiodes , 2001, SPIE OPTO.

[36]  S. Forrest,et al.  A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode , 2002, IEEE Photonics Technology Letters.

[37]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[38]  J. N. Hollenhorst Frequency response theory for multilayer photodiodes , 1990 .

[39]  Nick Doran,et al.  Optical Communication Systems , 1984 .

[40]  Bahaa E. A. Saleh,et al.  Time and frequency response of avalanche photodiodes with arbitrary structure , 1992 .

[41]  Joe C. Campbell,et al.  Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption "grading" and multiplication regions , 1985 .

[42]  M. J. Deen,et al.  A simplified approach to time-domain modeling of avalanche photodiodes , 1998 .