Beyond Higgs couplings: probing the Higgs with angular observables at future e+e− colliders

A bstractWe study angular observables in the e+e−→ZH→ℓ+ℓ−bb¯$$ {e}^{+}{e}^{-}\to ZH\to {\ell}^{+}{\ell}^{-}b\overline{b} $$ channel at future circular e+e− colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy s=240$$ \sqrt{s}=240 $$ GeV and 5 (30) ab−1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.

[1]  P. W. Hess,et al.  Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron , 2013, Science.

[2]  Paul Langacker,et al.  Effects of genuine dimension-six Higgs operators , 2003 .

[3]  J. Kamoshita,et al.  Prospects of measuring general Higgs couplings at $e^+e^-$ linear colliders , 2000, hep-ph/0002043.

[4]  R. Sinha,et al.  Inferring the nature of the boson at 125-126 GeV , 2013, 1301.5404.

[5]  Thorsten Ohl,et al.  O’Mega: An optimizing matrix element generator , 2000, hep-ph/0102195.

[6]  Hao-Ran Wang,et al.  Probing $HZ\gamma$ and $H\gamma\gamma$ anomalous couplings in the process of $e^+e^- \to H\gamma$ , 2015, 1503.05060.

[7]  M. Ramsey-Musolf,et al.  Fermionic effective operators and Higgs production at a linear collider , 2007, 0705.0554.

[8]  S. Heinemeyer,et al.  The Higgs Boson Production Cross Section as a Precision Observable , 2002, hep-ph/0203067.

[9]  Nicolas Produit,et al.  Low-Energy Measurements of the Weak Mixing Angle , 2013, 1302.6263.

[10]  K. Hagiwara,et al.  Probing the scalar sector in $$e^ + e^ - \to f\bar fH$$ , 1993 .

[11]  R. Sinha,et al.  Probing Higgs couplings at LHC and beyond , 2015, 1503.08924.

[12]  J. T. Childers,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[13]  M. Perelstein,et al.  Precision Higgsstrahlung as a probe of new physics , 2014, 1411.0676.

[14]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[15]  JiJi Fan,et al.  Probing charged matter through h → γγ, gamma ray lines, and EDMs , 2013, Journal of High Energy Physics.

[16]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[17]  M. Beneke,et al.  Anomalous Higgs couplings in angular asymmetries of H →Zℓ+ℓ− and e+e− →HZ , 2014, 1411.3942.

[18]  C. Englert,et al.  Modified Higgs sectors and NLO associated production , 2013, 1303.1526.

[19]  Oliver Fischer,et al.  Higgs production from sterile neutrinos at future lepton colliders , 2015, 1512.06035.

[20]  S. Rindani,et al.  Effective fermion–Higgs interactions at an e+e− collider with polarized beams , 2015, 1501.05437.

[21]  M. Campanelli,et al.  First look at the physics case of TLEP , 2013, 1308.6176.

[22]  W. Kilian,et al.  WHIZARD—simulating multi-particle processes at LHC and ILC , 2007, 0708.4233.

[23]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[24]  Zee,et al.  Electric dipole moment of the electron and of the neutron. , 1990, Physical review letters.

[25]  Matthew McCullough,et al.  New probe of naturalness. , 2013, Physical review letters.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  J. Ellis,et al.  Sensitivities of prospective future e+e− colliders to decoupled new physics , 2015, 1510.04561.

[28]  C. Calancha,et al.  ILC Higgs White Paper , 2013, 1310.0763.

[29]  Medhat H. M. Elsayed,et al.  CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector , 2015 .

[30]  Michael Trott,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[31]  B. Mukhopādhyāẏa,et al.  Exploration of the tensor structure of the Higgs boson coupling to weak bosons in e+e− collisions , 2014, 1405.3957.

[32]  S. Dutta,et al.  Measuring the Higgs-Vector boson Couplings at Linear $e^{+} e^{-}$ Collider , 2008, 0808.0477.

[33]  J. Ellis,et al.  Comparing EFT and exact one-loop analyses of non-degenerate stops , 2015, 1504.02409.

[34]  F. Renard,et al.  Tests of Anomalous Higgs Boson Couplings through $e^-e^+ \to HZ$ and $H\gamma$ , 1995, hep-ph/9509316.

[35]  S. Rindani,et al.  Angular distributions as a probe of anomalous ZZH and γZH interactions at a linear collider with polarized beams , 2009, 0901.2821.

[36]  Duccio Pappadopulo,et al.  Strong Higgs interactions at a linear collider , 2013, Journal of High Energy Physics.

[37]  H. Murayama,et al.  What do precision Higgs measurements buy us , 2014, 1404.1058.

[38]  John Ellis,et al.  The universal one-loop effective action , 2015, 1512.03003.