Optimal Quantum Feedback Control via Quantum Dynamic Programming

We describe the quantum filtering dynamics for a diffusive non-demolition measurement on an open quantum system. This is then used to determine appropriate feedback controls for the system and the quantum Bellman equation for optimal quantum feedback control is derived. These equations are demonstrated on the fully solvable model of the multi-dimensional controllable quantum particle in a quadratic potential with a noisy environment. We observe a duality between the solutions of quantum filtering and optimal quantum control for this example and note many similarities to the corresponding classical problem.

[1]  Herschel Rabitz,et al.  Optimal control of quantum non-Markovian dissipation: reduced Liouville-space theory. , 2004, The Journal of chemical physics.

[2]  Hideo Mabuchi,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[3]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[4]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[5]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[6]  Masamichi Takesaki,et al.  Conditional Expectations in von Neumann Algebras , 1972 .

[7]  V. Belavkin,et al.  Bellman equations for optimal feedback control of qubit states , 2004, quant-ph/0407192.

[8]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[9]  Viacheslav P. Belavkin Optimal Measurement and Control in Quantum Dynamical Systems , 2005 .

[10]  V. P. Belavkin,et al.  Quantum continual measurements and a posteriori collapse on CCR , 1992 .

[11]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[12]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[13]  Luc Bouten,et al.  Stochastic Schrödinger equations , 2003 .

[14]  Luc Bouten,et al.  Stochastic Schr¨ odinger equations , 2004 .

[15]  V. P. Belavkin,et al.  On the duality of quantum filtering and optimal feedback control in quantum open linear dynamical systems , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[16]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[17]  V. P. Belavkin,et al.  Quantum Filtering of Markov Signals with White Quantum Noise , 2005, quant-ph/0512091.

[18]  Luigi Accardi,et al.  The weak coupling limit as a quantum functional central limit , 1990 .

[19]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[20]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[21]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[22]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[23]  R. F. Werner,et al.  On quantum error-correction by classical feedback in discrete time , 2004 .

[24]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .