Evaluation of contextual information retrieval effectiveness: overview of issues and research

The increasing prominence of information arising from a wide range of sources delivered over electronic media has made traditional information retrieval systems less effective. Indeed, users are overwhelmed by the information delivered by such systems in response to their queries, particularly when the latter are ambiguous. In order to tackle this problem, the state-of-the-art reveals that there is a growing interest towards contextual information retrieval which relies on various sources of evidence issued from the user’s search background and environment like interests, preferences, time and location, in order to improve the retrieval accuracy. Contextual information retrieval systems are based on different definitions of the core concept of user’s context, various user’s context modeling approaches and several techniques of document relevance measurement, but all share the goal of providing the most useful information to the users in accordance with their context. However, the evaluation methodologies conceived in the past several years for traditional information retrieval and widely used in the evaluation campaigns have been challenged by the consideration of user’s context in the information retrieval process. Thus, we recognize that a critical review of existing evaluation methodologies in contextual information retrieval area is needed in order to design and develop standard evaluation frameworks. We present in this paper a comprehensive survey of contextual information retrieval evaluation methodologies and provide insights into how and why they are appropriate to measure the retrieval effectiveness. We also highlight some of the research challenges ahead that would constitute substantive research area for future research.

[1]  Dania Bilal Children's use of the Yahooligans! Web search engine: I. Cognitive, physical, and affective behaviors on fact‐based search tasks , 2000 .

[2]  Bryce Allen,et al.  Cognitive and task influences on Web searching behavior , 2002, J. Assoc. Inf. Sci. Technol..

[3]  Rahat Iqbal,et al.  User-centred design and evaluation of ubiquitous services , 2005, SIGDOC '05.

[4]  B. Dervin,et al.  Information needs and uses. , 1986 .

[5]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[6]  Peter Ingwersen,et al.  Polyrepresentation of information needs and semantic entities: elements of a cognitive theory for information retrieval interaction , 1994, SIGIR '94.

[7]  Javed Mostafa,et al.  Simulation Studies of Different Dimensions of Users' Interests and their Impact on User Modeling and Information Filtering , 2003, Information Retrieval.

[8]  David Bawden,et al.  The Turn: Integration of Information Seeking and Information Retrieval in Context , 2007, J. Documentation.

[9]  Fabio Crestani,et al.  Introduction to special issue on contextual information retrieval systems , 2007, Information Retrieval.

[10]  Ellen M. Voorhees,et al.  Variations in relevance judgments and the measurement of retrieval effectiveness , 1998, SIGIR '98.

[11]  Donna K. Harman,et al.  Overview of the Fourth Text REtrieval Conference (TREC-4) , 1995, TREC.

[12]  Deniz Yuret,et al.  Word Sense Disambiguation for Information Retrieval , 1999, AAAI/IAAI.

[13]  David Ellis The Dilemma of Measurement in Information Retrieval Research , 1996, J. Am. Soc. Inf. Sci..

[14]  Venkataraman Ramesh,et al.  Research in computer science: an empirical study , 2004, J. Syst. Softw..

[15]  Effie Lai-Chong Law,et al.  User Effect in Evaluating Personalized Information Retrieval Systems , 2006, EC-TEL.

[16]  Barry Smyth,et al.  Anonymous personalization in collaborative web search , 2006, Information Retrieval.

[17]  Kristian J. Hammond,et al.  User interactions with everyday applications as context for just-in-time information access , 2000, IUI '00.

[18]  John R. Paul,et al.  A Multiple Model Approach to Personalised Information Access , 2003 .

[19]  Peter Ingwersen,et al.  Measures of relative relevance and ranked half-life: performance indicators for interactive IR , 1998, SIGIR '98.

[20]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[21]  N ChinDavid Empirical Evaluation of User Models and User-Adapted Systems , 2001 .

[22]  Katsumi Tanaka,et al.  Context-Aware Query Refinement for Mobile Web Search , 2007, 2007 International Symposium on Applications and the Internet Workshops.

[23]  Susan Gauch,et al.  Improving Ontology-Based User Profiles , 2004, RIAO.

[24]  Ellen M. Voorhees,et al.  Retrieval evaluation with incomplete information , 2004, SIGIR '04.

[25]  Hong Xie,et al.  Users' evaluation of digital libraries (DLs): Their uses, their criteria, and their assessment , 2008, Inf. Process. Manag..

[26]  Emine Yilmaz,et al.  Estimating average precision when judgments are incomplete , 2007, Knowledge and Information Systems.

[27]  Daniela Petrelli,et al.  On the role of user-centred evaluation in the advancement of interactive information retrieval , 2008, Inf. Process. Manag..

[28]  Bill N. Schilit,et al.  Context-aware computing applications , 1994, Workshop on Mobile Computing Systems and Applications.

[29]  Cyril Cleverdon,et al.  The Cranfield tests on index language devices , 1997 .

[30]  Chen Ding,et al.  User modeling for personalized Web search with self-organizing map , 2007, J. Assoc. Inf. Sci. Technol..

[31]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[32]  Pedro M. Domingos,et al.  Personalizing web sites for mobile users , 2001, WWW '01.

[33]  K. Sparck Jones,et al.  INFORMATION RETRIEVAL TEST COLLECTIONS , 1976 .

[34]  Stephen S. Yau,et al.  Situation-aware personalized information retrieval for mobile Internet , 2003, Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003.

[35]  ChengXiang Zhai,et al.  Mining long-term search history to improve search accuracy , 2006, KDD '06.

[36]  Yufei Tao,et al.  Validity Information Retrieval for Spatio-Temporal Queries: Theoretical Performance Bounds , 2003, SSTD.

[37]  Korris Fu-Lai Chung,et al.  Knowledge and Information Systems , 2017 .

[38]  Ayse Göker,et al.  Evaluation of a mobile information system in context , 2008, Inf. Process. Manag..

[39]  Xiaohui Liu,et al.  The role of human factors in stereotyping behavior and perception of digital library users: a robust clustering approach , 2007, User Modeling and User-Adapted Interaction.

[40]  Stephen P. Harter,et al.  Evaluation of information retrieval systems : Approaches, issues, and methods , 1997 .

[41]  Adrian David Cheok,et al.  22nd International Conference on Human-Computer Interaction with Mobile Devices and Services , 2007, Lecture Notes in Computer Science.

[42]  Ryen W. White,et al.  Evaluating implicit feedback models using searcher simulations , 2005, TOIS.

[43]  Kate Beard,et al.  Multidimensional ranking for data in digital spatial libraries , 1997, International Journal on Digital Libraries.

[44]  Pertti Vakkari,et al.  The influence of relevance levels on the effectiveness of interactive information retrieval , 2004, J. Assoc. Inf. Sci. Technol..

[45]  Sven Buchholz,et al.  Modeling of Context Information for Pervasive Computing Applications , 2002 .

[46]  Justin Zobel,et al.  How reliable are the results of large-scale information retrieval experiments? , 1998, SIGIR '98.

[47]  David R. Morse,et al.  Enhanced Reality Fieldwork: the Context Aware Archaeological Assistant , 1997 .

[48]  Bamshad Mobasher,et al.  Introduction to intelligent techniques for Web personalization , 2007, TOIT.

[49]  Mohand Boughanem,et al.  Personalized document ranking: Exploiting evidence from multiple user interests for profiling and retrieval , 2008, J. Digit. Inf. Manag..

[50]  Linda Schamber Relevance and Information Behavior. , 1994 .

[51]  Jacek Gwizdka,et al.  Towards Information Retrieval Measures for Evaluation of Web Search Engines , 1999 .

[52]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[53]  Ayse Göker,et al.  User Context and Personalisation , 2002, ECCBR Workshops.

[54]  Louise T. Su Evaluation Measures for Interactive Information Retrieval , 1992, Inf. Process. Manag..

[55]  Vaninha Vieira,et al.  Investigating the Specifics of Contextual Elements Management: The CEManTIKA Approach , 2007, CONTEXT.

[56]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[57]  John Hatton,et al.  RAVE Reviews: Acquiring relevance assessments from multiple users , 1996 .

[58]  Anupam Joshi,et al.  MobileIQ: a framework for mobile information access , 2002, Proceedings Third International Conference on Mobile Data Management MDM 2002.

[59]  James Allan,et al.  HARD Track Overview in TREC 2003: High Accuracy Retrieval from Documents , 2003, TREC.

[60]  Kyung-Sun Kim,et al.  Effects of emotion control and task on Web searching behavior , 2008, Inf. Process. Manag..

[61]  Joemon M. Jose,et al.  How users assess Web pages for information seeking , 2005, J. Assoc. Inf. Sci. Technol..

[62]  Gary Marchionini,et al.  Information Seeking in Electronic Environments , 1995 .

[63]  Amanda Spink,et al.  Determining the user intent of web search engine queries , 2007, WWW '07.

[64]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[65]  Robert D. Macredie,et al.  Hypermedia learning and prior knowledge: domain expertise vs. system expertise , 2005, J. Comput. Assist. Learn..

[66]  Stephen E. Robertson,et al.  Comparing the Performance of Adaptive Filtering and Ranked Output Systems , 2002, Information Retrieval.

[67]  Robin Burke,et al.  Inferring User’s Information Context from User Profiles and Concept Hierarchies , 2004 .

[68]  Alessandro Micarelli,et al.  Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System , 2004, User Modeling and User-Adapted Interaction.

[69]  Mohand Boughanem,et al.  Applying Heuristics to Improve A Genetic Query Optimisation Process in Information Retrieval , 2001 .

[70]  William G. Griswold,et al.  Challenge: ubiquitous location-aware computing and the "place lab" initiative , 2003, WMASH '03.

[71]  Amanda Spink,et al.  Determining the informational, navigational, and transactional intent of Web queries , 2008, Inf. Process. Manag..

[72]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[73]  Brian Detlor,et al.  Gender and Web information seeking: A self-concept orientation model , 2006, J. Assoc. Inf. Sci. Technol..

[74]  Bamshad Mobasher,et al.  Data Mining for Web Personalization , 2007, The Adaptive Web.

[75]  Andrew Turpin,et al.  Why batch and user evaluations do not give the same results , 2001, SIGIR '01.

[76]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[77]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[78]  Bamshad Mobasher,et al.  Web search personalization with ontological user profiles , 2007, CIKM '07.

[79]  Pia Borlund,et al.  The IIR evaluation model: a framework for evaluation of interactive information retrieval systems , 2003, Inf. Res..

[80]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[81]  P. Solomon Children's information retrieval behavior: A case analysis of an OPAC , 1993 .

[82]  B. Pröll,et al.  Context-awareness in Mobile Tourism Guides – A Comprehensive Survey , 2005 .

[83]  W. Bruce Croft,et al.  Measuring ranked list robustness for query performance prediction , 2008, Knowledge and Information Systems.

[84]  Peter Ingwersen,et al.  Cognitive Perspectives of Information Retrieval Interaction: Elements of a Cognitive IR Theory , 1996, J. Documentation.

[85]  Paul Solomon,et al.  Children's Information Retrieval Behavior: A Case Analysis of an OPAC , 1993, J. Am. Soc. Inf. Sci..

[86]  K. Järvelin,et al.  EVALUATING INFORMATION RETRIEVAL SYSTEMS UNDER THE CHALLENGES OF INTERACTION AND MULTIDIMENSIONAL DYNAMIC RELEVANCE , 2002 .

[87]  S. Robertson The probability ranking principle in IR , 1997 .

[88]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[89]  Keith Cheverst,et al.  Developing a context-aware electronic tourist guide: some issues and experiences , 2000, CHI.

[90]  Mohand Boughanem,et al.  Multiple query evaluation based on an enhanced genetic algorithm , 2003, Inf. Process. Manag..

[91]  Djoerd Hiemstra,et al.  Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002 , 2003, SIGF.

[92]  Yvonne Rogers,et al.  Cognitive strategies in web searching. , 1999 .

[93]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[94]  Mohand Boughanem,et al.  Learning user interests for a session-based personalized search , 2008, IIiX.

[95]  William R. Hersh,et al.  Towards new measures of information retrieval evaluation , 1995, SIGIR '95.

[96]  Xiao Hu,et al.  Q&A Websites: Rich Research Resources for Contextualizing Information Retrieval Behaviors , 2005 .

[97]  Eero Sormunen,et al.  Liberal relevance criteria of TREC -: counting on negligible documents? , 2002, SIGIR '02.

[98]  Stephen E. Robertson,et al.  On the Evaluation of IR Systems , 1992, Inf. Process. Manag..

[99]  Kalervo Järvelin,et al.  Task Complexity Affects Information Seeking and Use , 1995, Inf. Process. Manag..

[100]  Fredrik Espinoza,et al.  Testing and demonstrating context-aware services with Quake III Arena , 2002, CACM.

[101]  David N. Chin Empirical Evaluation of User Models and User-Adapted Systems , 2001, User Modeling and User-Adapted Interaction.

[102]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[103]  Dania Bilal,et al.  Children's use of the Yahooligans! Web search engine: I. Cognitive, physical, and affective behaviors on fact-based search tasks , 2000, J. Am. Soc. Inf. Sci..

[104]  Pia Borlund,et al.  The concept of relevance in IR , 2003, J. Assoc. Inf. Sci. Technol..

[105]  Connor Graham,et al.  A Review of Mobile HCI Research Methods , 2003, Mobile HCI.

[106]  Ralf Bierig,et al.  Time, location and interest: an empirical and user-centred study , 2006, IIiX.

[107]  Kaj Grønbæk,et al.  HyCon: A framework for context-aware mobile hypermedia , 2003, New Rev. Hypermedia Multim..

[108]  Ralf Bierig,et al.  An ambient, personalised, and context-sensitive information system for mobile users , 2004, EUSAI '04.

[109]  Gordon S. Blair,et al.  Developing a Context Sensitive Tourist Guide , 1998 .

[110]  Stefano Mizzaro,et al.  How many relevances in information retrieval? , 1998, Interact. Comput..

[111]  Charles L. A. Clarke,et al.  Overview of the TREC 2004 Terabyte Track , 2004, TREC.

[112]  Farzin Maghoul,et al.  Y!Q: contextual search at the point of inspiration , 2005, CIKM '05.

[113]  Pablo Gervás,et al.  User-centred versus system-centred evaluation of a personalization system , 2008, Inf. Process. Manag..

[114]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[115]  Peter Ingwersen,et al.  Information retrieval in context: IRiX , 2005, SIGF.

[116]  Clement T. Yu,et al.  Personalized Web search for improving retrieval effectiveness , 2004, IEEE Transactions on Knowledge and Data Engineering.

[117]  Allison Woodruff,et al.  GIPSY: Automated Geographic Indexing of Text Documents , 1994, J. Am. Soc. Inf. Sci..

[118]  Xin Fu,et al.  Eliciting better information need descriptions from users of information search systems , 2007, Inf. Process. Manag..

[119]  Nagib Callaos,et al.  Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics , 2002 .

[120]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[121]  Ah-Hwee Tan,et al.  Towards personalised web intelligence , 2004, Knowledge and Information Systems.

[122]  Robert Ivor John,et al.  Fuzzy User Modeling for Information Retrieval on the World Wide Web , 2001, Knowledge and Information Systems.