Balances for fixed points of primitive substitutions
暂无分享,去创建一个
[1] Jean-Jacques Pansiot,et al. Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.
[2] F. M. Dekking,et al. On the distribution of digits in arithmetic sequences , 1983 .
[3] Walter Rudin,et al. Some theorems on Fourier coefficients , 1959 .
[4] G. Rauzy. Des mots en arithmétique , 1984 .
[5] A. Siegel,et al. Geometric representation of substitutions of Pisot type , 2001 .
[6] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[7] Günter Rote,et al. Sequences With Subword Complexity 2n , 1994 .
[8] Ronald L. Graham,et al. Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.
[9] Boris Adamczewski. R epartition des suites (n )n2N et substitutions , 2004 .
[10] Christian F. Skau,et al. Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.
[11] E. Haacke. Sequences , 2005 .
[12] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[13] H. Shapiro,et al. Extremal problems for polynomials and power series , 1951 .
[14] Valérie Berthé,et al. Balance properties of multi-dimensional words , 2002, Theor. Comput. Sci..
[15] R. TijdemanMay. Exact Covers of Balanced Sequences and Fraenkel's Conjecture. , 2001 .
[16] Ethan M. Coven,et al. Sequences with minimal block growth II , 1973, Mathematical systems theory.
[17] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[18] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[19] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[20] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[21] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[22] Luca Q. Zamboni,et al. Geometric realizations of substitutions , 1998 .
[23] P. Shiue,et al. Substitution invariant cutting sequences , 1993 .
[24] J. Coquet,et al. A summation formula related to the binary digits , 1983 .
[25] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[26] Sébastien Ferenczi,et al. Imbalances in Arnoux-Rauzy sequences , 2000 .
[27] Pascal Hubert,et al. Suites équilibrées , 2000, Theor. Comput. Sci..
[28] G. Rauzy,et al. Sequences defined by iterated morphisms , 1990 .
[29] Robert Tijdeman. Fraenkel's conjecture for six sequences , 2000, Discret. Math..
[30] Laurent Vuillon,et al. Generalized balances in Sturmian words , 2002, Discret. Appl. Math..
[31] R. Morikawa,et al. On eventually covering families generated by the bracket function V , 1983 .
[32] Jean-Marie Dumont,et al. Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..
[33] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[34] Alain Thomas,et al. Systems of numeration and fractal functions relating to substitutions (French) , 1989 .
[35] R. Chacon,et al. Weakly mixing transformations which are not strongly mixing , 1969 .
[36] Eitan Altman,et al. Balanced sequences and optimal routing , 2000, JACM.
[37] Boris Adamczewski. Codages de rotations et ph'enom`enes d''autosimilarit'e , 2001 .
[38] Gilles Didier. Codages de rotations et fractions continues , 1998 .
[39] Robert Tijdeman. Exact covers of balanced sequences and Fraenkel's conjecture , 2000 .