Balances for fixed points of primitive substitutions

An infinite word defined over a finite alphabet A is balanced if for any pair (ω,ω') of factors of the same length and for any letter a in the alphabet ||ω|a - |ω'|a| ≤ 1, where |ω|a denotes the number of occurrences of the letter a in the word ω. In this paper, we generalize this notion and introduce a measure of balance for an infinite sequence. In the case of fixed points of primitive substitutions, we show that the asymptotic behaviour of this measure is in part ruled by the spectrum of the incidence matrix associated with the substitution. Connections with frequencies of letters and other balance properties are also discussed.

[1]  Jean-Jacques Pansiot,et al.  Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.

[2]  F. M. Dekking,et al.  On the distribution of digits in arithmetic sequences , 1983 .

[3]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[4]  G. Rauzy Des mots en arithmétique , 1984 .

[5]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[6]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[7]  Günter Rote,et al.  Sequences With Subword Complexity 2n , 1994 .

[8]  Ronald L. Graham,et al.  Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.

[9]  Boris Adamczewski R epartition des suites (n )n2N et substitutions , 2004 .

[10]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[11]  E. Haacke Sequences , 2005 .

[12]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[13]  H. Shapiro,et al.  Extremal problems for polynomials and power series , 1951 .

[14]  Valérie Berthé,et al.  Balance properties of multi-dimensional words , 2002, Theor. Comput. Sci..

[15]  R. TijdemanMay Exact Covers of Balanced Sequences and Fraenkel's Conjecture. , 2001 .

[16]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[17]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[18]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[19]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[20]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[21]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[22]  Luca Q. Zamboni,et al.  Geometric realizations of substitutions , 1998 .

[23]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[24]  J. Coquet,et al.  A summation formula related to the binary digits , 1983 .

[25]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[26]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[27]  Pascal Hubert,et al.  Suites équilibrées , 2000, Theor. Comput. Sci..

[28]  G. Rauzy,et al.  Sequences defined by iterated morphisms , 1990 .

[29]  Robert Tijdeman Fraenkel's conjecture for six sequences , 2000, Discret. Math..

[30]  Laurent Vuillon,et al.  Generalized balances in Sturmian words , 2002, Discret. Appl. Math..

[31]  R. Morikawa,et al.  On eventually covering families generated by the bracket function V , 1983 .

[32]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[33]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[34]  Alain Thomas,et al.  Systems of numeration and fractal functions relating to substitutions (French) , 1989 .

[35]  R. Chacon,et al.  Weakly mixing transformations which are not strongly mixing , 1969 .

[36]  Eitan Altman,et al.  Balanced sequences and optimal routing , 2000, JACM.

[37]  Boris Adamczewski Codages de rotations et ph'enom`enes d''autosimilarit'e , 2001 .

[38]  Gilles Didier Codages de rotations et fractions continues , 1998 .

[39]  Robert Tijdeman Exact covers of balanced sequences and Fraenkel's conjecture , 2000 .