Pharmacological Characteristics Analysis of Two Molecular Structures
暂无分享,去创建一个
[1] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[2] Ernesto Estrada,et al. AN ATOM-BOND CONNECTIVITY INDEX : MODELLING THE ENTHALPY OF FORMATION OF ALKANES , 1998 .
[3] Michel Mollard,et al. Spanning graphs of hypercubes: starlike and double starlike trees , 2002, Discret. Math..
[4] K. Tajbakhsh,et al. Starlike trees are determined by their Laplacian spectrum , 2007 .
[5] I. Gutman,et al. On two types of geometric–arithmetic index , 2009 .
[6] A new geometric–arithmetic index , 2009 .
[7] D. Vukicevic,et al. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .
[8] STARLIKE TREES WITH MAXIMUM DEGREE 4 ARE DETERMINED BY THEIR SIGNLESS LAPLACIAN SPECTRA , 2010 .
[9] Bo Zhou,et al. On geometric-arithmetic index , 2010 .
[10] I. Gutman,et al. Relation between second and third geometric–arithmetic indices of trees , 2011 .
[11] Kinkar Chandra Das,et al. On the first geometric-arithmetic index of graphs , 2011, Discret. Appl. Math..
[12] I. Gutman,et al. Estimating the Second and Third Geometric-Arithmetic Indices ABSTRACT | FULL TEXT , 2011 .
[13] N. Trinajstic,et al. Comparison Between Geometric-arithmetic Indices , 2012 .
[14] GENERALIZED DEGREE DISTANCE OF TREES, UNICYCLIC AND BICYCLIC GRAPHS , 2012 .
[15] O. Khormali,et al. ON THE EDGE VERSION OF GEOMETRIC-ARITHMETIC INDEX , 2012 .
[16] J. Sedlar. EXTREMAL UNICYCLIC GRAPHS WITH RESPECT TO ADDITIVELY WEIGHTED HARARY INDEX , 2013, 1306.4164.
[17] A. Iranmanesh,et al. Minimum generalized degree distance of n-vertex tricyclic graphs , 2013 .
[18] M. Vijayaragavan,et al. Reciprocal degree distance of product graphs , 2014, Discret. Appl. Math..
[19] Ljiljana Pavlovic,et al. Extremal graphs for the geometric-arithmetic index with given minimum degree , 2014, Discret. Appl. Math..
[20] Wei Gao,et al. Second Atom-Bond Connectivity Index of Special Chemical Molecular Structures , 2014 .
[21] J. M. Sigarreta. Bounds for The Geometric-Arithmetic Index of a Graph , 2015 .
[22] Roberto Cruz,et al. Vertex-degree-based topological indices over starlike trees , 2015, Discret. Appl. Math..
[23] C. Martin. 2015 , 2015, Les 25 ans de l’OMC: Une rétrospective en photos.
[24] 王维凡,et al. The vertex version of weighted Wiener number for bicyclic molecular structures , 2015 .
[25] M. Farahani,et al. Vertex PIv Topological Index of Titania Carbon Nanotubes TiO2(m,n) , 2016 .
[26] M. Farahani,et al. Computing Eccentric Version of Second Zagreb Index of Polycyclic Aromatic Hydrocarbons (PAHk) , 2016 .
[27] Wei Gao,et al. The Eccentricity Version of Atom-Bond Connectivity Index of Linear Polycene Parallelogram Benzenoid ABC5(P(n,n)). , 2016, Acta chimica Slovenica.
[28] Wei Gao,et al. The eccentric connectivity polynomial of two classes of nanotubes , 2016 .
[29] Wei Gao,et al. Forgotten topological index of chemical structure in drugs , 2016, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society.
[30] M. Farahani,et al. Vertex PI v Topological Index of Titania Carbon Nanotubes TiO 2 ( m , n ) , 2016 .
[31] Jose Maria Sigarreta,et al. Spectral properties of geometric-arithmetic index , 2016, Appl. Math. Comput..
[32] W. Gao,et al. THE FORGOTTEN TOPOLOGICAL INDEX OF SOME DRUG STRUCTURES , 2016 .
[33] Wei Gao,et al. Electron Energy Studying of Molecular Structures via Forgotten Topological Index Computation , 2016 .
[34] Wei Gao,et al. Topological Indices Study of Molecular Structure in Anticancer Drugs , 2016 .