High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus

[1]  James H. Roberts,et al.  The fluffy core of Enceladus , 2015 .

[2]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[3]  J. Waite,et al.  Possible evidence for a methane source in Enceladus' ocean , 2015 .

[4]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[5]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[6]  H. Miyamoto,et al.  Particle deposition on the saturnian satellites from ephemeral cryovolcanism on Enceladus , 2014, 2205.11265.

[7]  H. Hussmann,et al.  Non-steady state tidal heating of Enceladus , 2014 .

[8]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[9]  Ken Takai,et al.  Reactions between basalt and CO2-rich seawater at 250 and 350°C, 500bars: Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean , 2013 .

[10]  F. Postberg,et al.  Silica nanoparticles as an evidence of hydrothermal activities at Enceladus , 2013 .

[11]  E. Ellison,et al.  Hydrogen generation from low-temperature water-rock reactions , 2013 .

[12]  G. Schubert,et al.  Keeping Enceladus warm , 2012 .

[13]  J. Goodman,et al.  Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds , 2012 .

[14]  T. Johnson,et al.  Enceladus: A hypothesis for bringing both heat and chemicals to the surface , 2012 .

[15]  M. Zolotov Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems , 2012 .

[16]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[17]  Robert A. West,et al.  The composition and structure of the Enceladus plume , 2011 .

[18]  W. Martin,et al.  Serpentinization as a source of energy at the origin of life , 2010, Geobiology.

[19]  B. Lollar,et al.  The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions , 2010 .

[20]  F. Nimmo,et al.  The role of episodic overturn in generating the surface geology and heat flow on Enceladus , 2010 .

[21]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[22]  Larry W. Esposito,et al.  Saturn from Cassini-Huygens , 2009 .

[23]  Kenji Shimizu,et al.  H2 generation by experimental hydrothermal alteration of komatiitic glass at 300°C and 500 bars: A preliminary result from on-going experiment , 2009 .

[24]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[25]  J. Lunine,et al.  FORMATION CONDITIONS OF ENCELADUS AND ORIGIN OF ITS METHANE RESERVOIR , 2009 .

[26]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[27]  Andrew Scott Rivkin,et al.  Brucite and carbonate assemblages from altered olivine-rich materials on Ceres , 2009 .

[28]  T. McCollom,et al.  Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks , 2009 .

[29]  Susan L. Brantley,et al.  Kinetics of Mineral Dissolution , 2008 .

[30]  J. Kubicki,et al.  Kinetics of water-rock interaction , 2008 .

[31]  A. Tsuchiyama,et al.  Chondrulelike Objects in Short-Period Comet 81P/Wild 2 , 2008, Science.

[32]  Everett L. Shock,et al.  The oxidation state of hydrothermal systems on early Enceladus , 2008 .

[33]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[34]  N. Brilliantov,et al.  Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures , 2008, Nature.

[35]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[36]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[37]  William E. Seyfried,et al.  Redox evolution and mass transfer during serpentinization : An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges , 2007 .

[38]  G. Collins,et al.  Enceladus' south polar sea , 2007 .

[39]  B. Frost,et al.  On Silica Activity and Serpentinization , 2007 .

[40]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[41]  Jonathan I. Lunine,et al.  Enceladus' plume: Compositional evidence for a hot interior , 2007 .

[42]  D. Blake,et al.  Serpentinization and its implications for life on the early Earth and Mars. , 2006, Astrobiology.

[43]  James S. Cleverley,et al.  K2GWB: Utility for generating thermodynamic data files for The Geochemist's Workbench® at 0-1000 °C and 1-5000 bar from UT2K and the UNITHERM database , 2005, Comput. Geosci..

[44]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[45]  J. Wisdom Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .

[46]  D. Lee Mechanism and kinetics of the catalytic oxidation of aqueous ammonia to molecular nitrogen. , 2003, Environmental science & technology.

[47]  Thomas M. McCollom,et al.  Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate , 2003 .

[48]  A. Tsuchiyama,et al.  Experimental study of incongruent evaporation kinetics of enstatite in vacuum and in hydrogen gas , 2002 .

[49]  Jonathan P. Icenhower,et al.  The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength , 2000 .

[50]  E. Shock,et al.  Distinguishing ultramafic‐from basalt‐hosted submarine hydrothermal systems by comparing calculated vent fluid compositions , 2000 .

[51]  T. Shankland,et al.  Electrical conductivity of orthopyroxene and its high pressure phases , 1999 .

[52]  J. Horita,et al.  Abiogenic methane formation and isotopic fractionation under hydrothermal conditions , 1999, Science.

[53]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[54]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[55]  Emmanuel Lellouch,et al.  The Spectrum of Comet Hale-Bopp (C/1995 O1) Observed with the Infrared Space Observatory at 2.9 Astronomical Units from the Sun , 1997, Science.

[56]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[57]  Carla M. Koretsky,et al.  Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures , 1995 .

[58]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[59]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[60]  J. Tester,et al.  Oxidation of simple compounds and mixtures in supercritical water: carbon monoxide, ammonia and ethanol , 1988 .

[61]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[62]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[63]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[64]  D. Blankenship,et al.  Ocean-driven heating of Europa/'s icy shell at low latitudes , 2014 .

[65]  D. Kelley,et al.  Lost City Hydrothermal Field , 2007 .

[66]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[67]  大島 義人,et al.  Catalytic Supercritical Water Oxidation of Coke Works Waste with Manganese Oxide. , 2001 .

[68]  William E Seyfried,et al.  Experimental and Theoretical Constraints on Hydrothermal Alteration Processes at Mid-Ocean Ridges , 1987 .

[69]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .