Development of Group ContributionPlus Models for Properties of Organic Chemical Systems

CAPEC is committed to research, to work in close collaboration with industry and to participate in educational activities. The research objectives of CAPEC are to develop computer-aided systems for product/process simulation, design, analysis and control/operation for chemical, petrochemical, pharmaceutical and biochemical industries. The dissemination of the research results of CAPEC is carried out in terms of computational tools, technology and application. Under computational tools, CAPEC is involved with mathematical models, numerical solvers, process/operation mathematical models, numerical solvers, process simulators, process/product synthesis/design toolbox, control toolbox, databases and many more. Under technology, CAPEC is involved with development of methodologies for synthesis/design of processes and products, analysis, control and operation of processes, strategies for modelling and simulation, solvent and chemical selection and design, pollution prevention and many more. Under application, CAPEC is actively involved with developing industrial case studies, tutorial case studies for education and training, technology transfer studies together with industrial companies, consulting and many more.

[1]  S. Sandler,et al.  Using Molecular Orbital Calculations To Describe the Phase Behavior of Hydrogen-Bonding Fluids† , 1997 .

[2]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[3]  M. Michelsen,et al.  High‐pressure vapor‐liquid equilibrium with a UNIFAC‐based equation of state , 1990 .

[4]  Paul M. Mathias,et al.  Applied thermodynamics for process modeling , 2002 .

[5]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[6]  H. Ness Thermodynamics in the treatment of (vapor + liquid) equilibria , 1995 .

[7]  S. Skjold-Jørgensen Gas solubility calculations. II. Application of a new group-contribution equation of state , 1984 .

[8]  P. Rasmussen,et al.  From UNIFAC to SUPERFAC - and back? , 1985 .

[9]  M. Randic,et al.  The connectivity index 25 years after. , 2001, Journal of molecular graphics & modelling.

[10]  Kazuo Kojima,et al.  Prediction of vapor-liquid equilibria by the ASOG method , 1979 .

[11]  S. Unger Molecular Connectivity in Structure–activity Analysis , 1987 .

[12]  I. Marrucho,et al.  Liquid-liquid equilibrium of (perfluoroalkane + alkane) binary mixtures , 2006 .

[13]  Aage Fredenslund,et al.  A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing , 1987 .

[14]  L B Kier,et al.  Molecular connectivity VII: specific treatment of heteroatoms. , 1976, Journal of pharmaceutical sciences.

[15]  Christodoulos A. Floudas,et al.  Global Optimization and Analysis for the Gibbs Free Energy Function Using the UNIFAC, Wilson, and ASOG Equations , 1995 .

[16]  R. Gani,et al.  The CAPEC Database , 2001 .

[17]  J. D. Hemptinne,et al.  Modeling Phase Equilibrium of H2 + n-Alkane and CO2 + n-Alkane Binary Mixtures Using a Group Contribution Statistical Association Fluid Theory Equation of State (GC−SAFT−EOS) with a kij Group Contribution Method , 2006 .

[18]  John P. O'Connell,et al.  A Generalized Method for Predicting Second Virial Coefficients , 1975 .

[19]  Quantitative structure–property relationships and neural networks: correlation and prediction of physical properties of pure components and mixtures from molecular structure , 1999 .

[20]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[21]  J. Gmehling,et al.  PSRK: A Group Contribution Equation of State Based on UNIFAC , 1991 .

[22]  R. H. M. Simon,et al.  Estimation of critical properties of organic compounds by the method of group contributions. A. L. Lyderren. Engineering Experiment Station Report 3. College of Engineering, University of Wisconsin, Madison, Wisconsin (1955). 22 pages , 1956 .

[23]  Towards the development of a second-order approximation in activity coefficient models based on group contributions , 1996 .

[24]  Jiding Li,et al.  A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties , 1993 .

[25]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[26]  Jean-Charles de Hemptinne,et al.  Application of group contribution SAFT equation of state (GC-SAFT) to model phase behaviour of light and heavy esters , 2005 .

[27]  D. V. Velzen,et al.  A Liquid Viscosity-Temperature-Chemical Constitution Relation for Organic Compounds , 1972 .

[28]  R. L. Robinson,et al.  QSPR generalization of activity coefficient models for predicting vapor–liquid equilibrium behavior , 2007 .

[29]  R. Gani,et al.  A method for prediction of UNIFAC group interaction parameters , 2007 .

[30]  Charles A. Eckert,et al.  Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC , 1984 .

[31]  G. A. Ratcliff,et al.  An improved group solution model for the prediction of excess free energies of liquid mixtures , 1975 .

[32]  S. Benson,et al.  Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties , 1958 .

[33]  L. Doraiswamy,et al.  Estimation of Heats of Formation of Organic Compounds , 1965 .

[34]  G. Pierotti,et al.  Activity Coefficients and Molecular Structure , 1959 .

[35]  Robert C. Reid,et al.  Estimation of critical properties with group contribution methods , 1984 .

[36]  K. Kobe The properties of gases and liquids , 1959 .

[37]  A. Klamt,et al.  COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids , 2000 .

[38]  Rafiqul Gani,et al.  Polymer Property Modeling Using Grid Technology for Design of Structured Products , 2007 .

[39]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[40]  R. Fletcher A modified Marquardt subroutine for non-linear least squares , 1971 .

[41]  Sándor Kemény,et al.  Reduction of thermodynamic data by means of the multiresponse maximum likelihood principle , 1982 .

[42]  J. D. Hemptinne,et al.  Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT) , 2005 .

[43]  I. W Nowell,et al.  Molecular Connectivity in Structure-Activity Analysis , 1986 .

[44]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[45]  Henry V. Kehiaian,et al.  Group contribution methods for liquid mixtures: A critical review , 1983 .

[46]  L B Kier,et al.  Molecular connectivity V: connectivity series concept applied to density. , 1976, Journal of pharmaceutical sciences.

[47]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[48]  J. L. Franklin Prediction of Heat and Free Energies of Organic Compounds , 1949 .

[49]  E. Voutsas,et al.  Thermodynamic property calculations with the universal mixing rule for EoS/GE models: Results with the Peng–Robinson EoS and a UNIFAC model , 2006 .

[50]  Thomas F. Anderson,et al.  Solid-Liquid Equilibria Using UNIFAC , 1978 .

[51]  A. Marcilla,et al.  Comments on Liquid−Liquid Equilibrium Data Regression , 2007 .

[52]  L B Kier,et al.  Derivation and significance of valence molecular connectivity. , 1981, Journal of pharmaceutical sciences.

[53]  Kenneth R. Hall,et al.  An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases , 2003 .

[54]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[55]  Rafiqul Gani,et al.  Combined Group-Contribution and Atom Connectivity Index-Based Methods for Estimation of Surface Tension and Viscosity , 2008 .

[56]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[57]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[58]  小島 和夫,et al.  Prediction of vapor-liquid equilibria by the ASOG method , 1979 .

[59]  M. Randic Characterization of molecular branching , 1975 .

[60]  A. Klamt,et al.  Challenges in thermodynamics , 2004 .

[61]  Aage Fredenslund,et al.  The MHV2 model: a UNIFAC-based equation of state model for prediction of gas solubility and vapor-liquid equilibria at low and high pressures , 1991 .

[62]  R. T. Sanderson Electronegativities in inorganic chemistry: (II) , 1954 .

[63]  R. Gani,et al.  Automatic Creation of Missing Groups through Connectivity Index for Pure-Component Property Prediction , 2005 .

[64]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[65]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[66]  R. T. Sanderson Principles of electronegativity Part II. Applications , 1988 .

[67]  O. Redlich,et al.  Group Interactin. I. A Model for Interaction in Solutions , 1959 .

[68]  J. Gaube J. Gmehling, U. Onken, W. Arlt: Vapor-Liquid-Equilibrium Data Collection, in der Reihe: Chemistry Data Series, Vol. I. Parts 3 + 4 Aldehydes and Ketones Ethers, Dechema, Frankfurt 1979. 624 Seiten. Part 6a Aliphatic Hydrocarbons C4-C6, Dechema, Frankfurt , 1982 .

[69]  Siegfried Schulz,et al.  Parameter Optimization of Group Contribution Methods in High Dimensional Solution Spaces , 1999, Fuzzy Days.

[70]  G. A. Ratcliff,et al.  Prediction of excess free energies of liquid mixtures by an analytical group solution model , 1971 .

[71]  J. D. Hemptinne,et al.  Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series , 2004 .

[72]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[73]  Juan J. Espada,et al.  Liquid-Liquid Equilibrium in the Systems Furfural+Light Lubricating Oils using UNIFAC , 2007 .

[74]  Rafiqul Gani,et al.  Computer-aided framework for pure component properties and phase equilibria prediction for organic systems , 2007 .

[75]  J. Gmehling,et al.  A modified UNIFAC model. 1. Prediction of VLE, hE, and .gamma..infin. , 1987 .

[76]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[77]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[78]  M. N. Papadopoulos,et al.  Group Interaction. II. A Test of the Group Model on Binary Solutions of Hydrocarbons , 1959 .

[79]  D. V. Krevelen,et al.  Erratum: Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions)☆ , 1952 .