Does Sumoylation Control K2P1/TWIK1 Background K+ Channels?

[1]  M. Lohse,et al.  SUMO-1 Controls the Protein Stability and the Biological Function of Phosducin* , 2006, Journal of Biological Chemistry.

[2]  D. Bayliss,et al.  International Union of Pharmacology. LV. Nomenclature and Molecular Relationships of Two-P Potassium Channels , 2005, Pharmacological Reviews.

[3]  H. Betz,et al.  Pias1 Interaction and Sumoylation of Metabotropic Glutamate Receptor 8* , 2005, Journal of Biological Chemistry.

[4]  Xuedong Liu,et al.  A Method of Mapping Protein Sumoylation Sites by Mass Spectrometry Using a Modified Small Ubiquitin-like Modifier 1 (SUMO-1) and a Computational Program*S , 2005, Molecular & Cellular Proteomics.

[5]  Donghee Kim Physiology and pharmacology of two-pore domain potassium channels. , 2005, Current pharmaceutical design.

[6]  J. Barhanin,et al.  Expression and insights on function of potassium channel TWIK-1 in mouse kidney , 2005, Pflügers Archiv.

[7]  G. Rosas-Acosta,et al.  Wrestling with SUMO in a New Arena , 2005, Science's STKE.

[8]  M. Butler,et al.  Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1 , 2005, Cell.

[9]  M. Lazdunski,et al.  A phospholipid sensor controls mechanogating of the K+ channel TREK‐1 , 2005, The EMBO journal.

[10]  M. Lazdunski,et al.  ARF6‐dependent interaction of the TWIK1 K+ channel with EFA6, a GDP/GTP exchange factor for ARF6 , 2004, EMBO reports.

[11]  R. Dohmen SUMO protein modification. , 2004, Biochimica et biophysica acta.

[12]  Zhengxin Wang,et al.  SENP1 Enhances Androgen Receptor-Dependent Transcription through Desumoylation of Histone Deacetylase 1 , 2004, Molecular and Cellular Biology.

[13]  D. Bayliss,et al.  Two-Pore-Domain (Kcnk) Potassium Channels: Dynamic Roles in Neuronal Function , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[14]  E. Honoré,et al.  Properties and modulation of mammalian 2P domain K+ channels , 2001, Trends in Neurosciences.

[15]  M. Lazdunski,et al.  Molecular and functional properties of two-pore-domain potassium channels. , 2000, American journal of physiology. Renal physiology.

[16]  M. Lazdunski,et al.  TWIK-2, an Inactivating 2P Domain K+ Channel* , 2000, The Journal of Biological Chemistry.

[17]  F. Brodsky,et al.  Adp-Ribosylation Factor 6 and Endocytosis at the Apical Surface of Madin-Darby Canine Kidney Cells , 1999, The Journal of cell biology.

[18]  M. Lazdunski,et al.  TASK, a human background K+ channel to sense external pH variations near physiological pH , 1997, The EMBO journal.

[19]  M. Lazdunski,et al.  The structure, function and distribution of the mouse TWIK‐1 K+ channel , 1997, FEBS letters.

[20]  G. Blobel,et al.  A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex , 1996, The Journal of cell biology.

[21]  M. Lazdunski,et al.  Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. , 1996, The EMBO journal.

[22]  M. Lazdunski,et al.  Dimerization of TWIK‐1 K+ channel subunits via a disulfide bridge. , 1996, The EMBO journal.

[23]  M. Lazdunski,et al.  TWIK‐1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. , 1996, The EMBO journal.