The Complexity of Temporal Constraint Languages

A temporal constraint language is a set of relations that has a first-order definition in (Q, <), the dense linear order of the rational numbers. We present a complete complexity classification of the constraint satisfaction problem (CSP) for temporal constraint languages: if the constraint language is contained in one out of nine temporal constraint languages, then the CSP can be solved in polynomial time; otherwise, the CSP is NP-complete. Our proof combines model-theoretic concepts with techniques from universal algebra, and also applies the so-called product Ramsey theorem, which we believe will be useful in similar contexts of constraint satisfaction complexity classification.

[1]  Ivo G. Rosenberg,et al.  Structural theory of automata, semigroups, and universal algebra , 2005 .

[2]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[3]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[4]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[5]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[6]  A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[7]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, CSR.

[8]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[9]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[10]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[11]  Pawel M. Idziak,et al.  Tractability and Learnability Arising from Algebras with Few Subpowers , 2010, SIAM J. Comput..

[12]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[13]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[14]  Markus Junker,et al.  The 116 reducts of (Q, <, a) , 2008, J. Symb. Log..

[15]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[16]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[17]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[18]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[19]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[20]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[21]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[22]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[23]  Rolf H. Möhring,et al.  Scheduling with AND/OR Precedence Constraints , 2004, SIAM J. Comput..

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[25]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[26]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[27]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[28]  Manuel Bodirsky,et al.  A Fast Algorithm and Lower Bound for Temporal Reasoning , 2008, ArXiv.

[29]  P. Jeavons,et al.  The complexity of constraint satisfaction : an algebraic approach. , 2005 .

[30]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[31]  Peter Jeavons,et al.  Building tractable disjunctive constraints , 2000, J. ACM.