Reading Small Scalar Data Fields: Color Scales vs. Detail on Demand vs. FatFonts

We empirically investigate the advantages and disadvantages of color and digit-based methods to represent small scalar fields. We compare two types of color scales (one brightness-based and one that varies in hue, saturation and brightness) with an interactive tooltip that shows the scalar value on demand, and with a symbolic glyph-based approach (FatFonts). Three experiments tested three tasks: reading values, comparing values, and finding extrema. The results provide the first empirical comparisons of color scales with symbol-based techniques. The interactive tooltip enabled higher accuracy and shorter times than the color scales for reading values but showed slow completion times and low accuracy for value comparison and extrema finding tasks. The FatFonts technique showed better speed and accuracy for reading and value comparison, and high accuracy for the extrema finding task at the cost of being the slowest for this task.

[1]  Philip K. Robertson,et al.  The application of perceptual color spaces to the display of remotely sensed imagery , 1988 .

[2]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[3]  Bernice E. Rogowitz,et al.  Data visualization: the end of the rainbow , 1998 .

[4]  Heidrun Schumann,et al.  Task-Driven Color Coding , 2008, 2008 12th International Conference Information Visualisation.

[5]  Cynthia A. Brewer,et al.  Mapping Mortality: Evaluating Color Schemes for Choropleth Maps , 1997 .

[6]  William S. Cleveland,et al.  A Color-Caused Optical Illusion on a Statistical Graph , 1983 .

[7]  John T. Stasko,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[8]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[9]  David Borland,et al.  Rainbow Color Map (Still) Considered Harmful , 2007 .

[10]  Penny Rheingans Color, change, and control of quantitative data display , 1992, Proceedings Visualization '92.

[11]  Klaus Mueller,et al.  Color Design for Illustrative Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[13]  Stephan Lewandowsky,et al.  Perception of clusters in statistical maps , 1993 .

[14]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[15]  Eli Maor,et al.  The universal history of numbers : from prehistory to the invention of the computer , 2001 .

[16]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[17]  Aaron J. Quigley,et al.  The cost of display switching: a comparison of mobile, large display and hybrid UI configurations , 2012, AVI.

[18]  Raj M Ratwani,et al.  A perceptual process approach to selecting color scales for complex visualizations. , 2009, Journal of experimental psychology. Applied.

[19]  Michael S. Bernstein,et al.  Learning Perceptual Kernels for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Ian Spence,et al.  Using color to code quantity in spatial displays. , 1999 .

[21]  Patrick J. Bartlein,et al.  The end of the rainbow? Color schemes for improved data graphics , 2004 .

[22]  M. van der Burg,et al.  Targeted Genome Editing in Human Repopulating Hematopoietic Stem Cells , 2014, Nature.

[23]  Klaus Mueller,et al.  Harmonic Colormaps for Volume Visualization , 2008, VG/PBG@SIGGRAPH.

[24]  M. Sheelagh T. Carpendale,et al.  FatFonts: combining the symbolic and visual aspects of numbers , 2012, AVI.

[25]  Philip K. Robertson,et al.  The Generation of Color Sequences for Univariate and Bivariate Mapping , 1986, IEEE Computer Graphics and Applications.

[26]  Christopher J. Fluke,et al.  Embedding and Publishing Interactive, 3-Dimensional, Scientific Figures in Portable Document Format (PDF) Files , 2013, PloS one.

[27]  Philip K. Robertson Visualizing color gamuts: a user interface for the effective use of perceptual color spaces in data displays , 1988, IEEE Computer Graphics and Applications.

[28]  Erik Reinhard,et al.  Face-based luminance matching for perceptual colormap generation , 2002, IEEE Visualization, 2002. VIS 2002..

[29]  Rafael Huertas,et al.  Ultra-large color difference and small subtense , 2010 .

[30]  Bernice E. Rogowitz,et al.  Building perceptual color maps for visualizing interval data , 2000, Electronic Imaging.

[31]  Andrea G. Citrolo,et al.  High Contrast Color Sets under Multiple Illuminants , 2013, CCIW.

[32]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[33]  Robert J. Moorhead,et al.  A User Study to Compare Four Uncertainty Visualization Methods for 1D and 2D Datasets , 2009, IEEE Transactions on Visualization and Computer Graphics.

[34]  Samuel S. Silva,et al.  There is More to Color Scales than Meets the Eye: A Review on the Use of Color in Visualization , 2007, 2007 11th International Conference Information Visualization (IV '07).

[35]  Kenneth Moreland,et al.  Diverging Color Maps for Scientific Visualization , 2009, ISVC.

[36]  Alan D. Kalvin Graduated profiling: enumerating and generating perceptual colormaps for uncalibrated computer displays , 2002, IS&T/SPIE Electronic Imaging.

[37]  Samuel S. Silva,et al.  Using color in visualization: A survey , 2011, Comput. Graph..

[38]  James McNames,et al.  An effective color scale for simultaneous color and gray-scale publications , 2006, IEEE Signal Process. Mag..

[39]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[40]  Cynthia A. Brewer PREDICTION OF SIMULTANEOUS CONTRAST BETWEEN MAP COLORS WITH HUNT'S MODEL OF COLOR APPEARANCE , 1996 .

[41]  Simon X. Chen,et al.  Emergence of reproducible spatiotemporal activity during motor learning , 2014, Nature.

[42]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[43]  Domen Mongus,et al.  Visualising the Attributes of Biological Cells, Based on Human Perception , 2013, CHI-KDD.

[44]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[45]  Donald P. Greenberg,et al.  Color-defective vision and computer graphics displays , 1988, IEEE Computer Graphics and Applications.

[46]  Haim Levkowitz,et al.  Color scales for image data , 1992, IEEE Computer Graphics and Applications.

[47]  Raj M. Ratwani,et al.  An algorithm for generating color scales for both categorical and ordinal coding , 2010 .

[48]  Maureen C. Stone,et al.  A field guide to digital color , 2003 .

[49]  Erik-Jan van der Linden,et al.  Generating Color Palettes using Intuitive Parameters , 2008, Comput. Graph. Forum.