Alternative dielectrics to silicon dioxide for memory and logic devices

The silicon-based microelectronics industry is rapidly approaching a point where device fabrication can no longer be simply scaled to progressively smaller sizes. Technological decisions must now be made that will substantially alter the directions along which silicon devices continue to develop. One such challenge is the need for higher permittivity dielectrics to replace silicon dioxide, the properties of which have hitherto been instrumental to the industry's success. Considerable efforts have already been made to develop replacement dielectrics for dynamic random-access memories. These developments serve to illustrate the magnitude of the now urgent problem of identifying alternatives to silicon dioxide for the gate dielectric in logic devices, such as the ubiquitous field-effect transistor.

[1]  Guido Groeseneken,et al.  Cost-effective cleaning and high-quality thin gate oxides , 1999, IBM J. Res. Dev..

[2]  P. Fazan Trends in the development of ULSI DRAM capacitors , 1994 .

[3]  W. Lai,et al.  The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[4]  Steven M. Bilodeau,et al.  MOCVD BaSrTiO3 for ≥1-Gbit DRAMs , 1997 .

[5]  Ming-Ta Hsieh,et al.  MOSFET transistors fabricated with high permitivity TiO/sub 2/ dielectrics , 1997 .

[6]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[7]  E. P. Gusev,et al.  Intermixing at the tantalum oxide/silicon interface in gate dielectric structures , 1998 .

[8]  Robert M. Wallace,et al.  ELECTRICAL PROPERTIES OF HAFNIUM SILICATE GATE DIELECTRICS DEPOSITED DIRECTLY ON SILICON , 1999 .

[9]  J. Stathis,et al.  Ultra-thin oxide reliability for ULSI applications , 2000 .

[10]  B. W. Ricketts,et al.  Dielectric properties of ceramics , 1996 .

[11]  R. Wallace,et al.  Hafnium and zirconium silicates for advanced gate dielectrics , 2000 .

[12]  A. Kingon,et al.  Ferroelectricity in thin films: The dielectric response of fiber-textured (BaxSr1−x)Ti1+yO3+z thin films grown by chemical vapor deposition , 1999 .

[13]  Ramamoorthy Ramesh,et al.  Thin Film Ferroelectric Materials and Devices , 1997 .

[14]  Hideki Murakami,et al.  Fundamental limit of gate oxide thickness scaling in advanced MOSFETs , 2000 .

[15]  G. Kunkel,et al.  (Ba, Sr)TiO3 dielectrics for future stacked- capacitor DRAM , 1999, IBM J. Res. Dev..

[16]  T. Horikawa,et al.  Dielectric Relaxation of (Ba, Sr)TiO3 Thin Films , 1995 .

[17]  D. Kotecki A review of high dielectric materials for DRAM capacitors , 1997 .

[18]  P. Fazan,et al.  Ultrathin oxide-nitride dielectrics for rugged stacked DRAM capacitors , 1992, IEEE Electron Device Letters.

[19]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[20]  Eduard A. Cartier,et al.  High-resolution depth profiling in ultrathin Al2O3 films on Si , 2000 .

[21]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[22]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[23]  Y. Taur,et al.  Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's , 1997, IEEE Electron Device Letters.

[24]  T. H. Baum,et al.  Common and unique aspects of perovskite thin film CVD processes , 1998 .

[25]  Angus I. Kingon,et al.  High-Permittivity Perovskite Thin Films for Dynamic Random-Access Memories , 1996 .

[26]  S. Summerfelt (Ba,Sr)TiO3 Thin Films for Dram’s , 1997 .

[27]  R. Waser,et al.  Resistance degradation behavior of Ba0.7Sr0.3TiO3 thin films compared to mechanisms found in titanate ceramics and single crystals , 1998 .

[28]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[29]  Rainer Waser,et al.  The dielectric response as a function of temperature and film thickness of fiber-textured (Ba,Sr)TiO3 thin films grown by chemical vapor deposition , 1997 .

[30]  Robert Benjamin Laibowitz,et al.  Dielectric relaxation of Ba0.7Sr0.3TiO3 thin films from 1 mHz to 20 GHz , 1998 .

[31]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .