Theory of magnetic field stabilized compact skyrmions in thin-film ferromagnets

We present a micromagnetic theory of compact magnetic skyrmions under applied magnetic field that accounts for the full dipolar energy and the interfacial Dzyaloshinskii-Moryia interaction (DMI) in the thin film regime. Asymptotic analysis is used to derive analytical formulas for the parametric dependence of the skyrmion size and rotation angle, as well as the energy barriers for collapse and bursting, two processes that lead to a finite skyrmion lifetime. We demonstrate the existence of a new regime at low DMI, in which the skyrmion is stabilized by a combination of non-local dipolar interaction and a magnetic field applied parallel to its core, and discuss the conditions for an experimental realization of such field-stabilized skyrmions.

[1]  A. Kent,et al.  Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film. , 2022, Nano letters.

[2]  C. Muratov,et al.  A micromagnetic theory of skyrmion lifetime in ultrathin ferromagnetic films , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Fangohr,et al.  Skyrmion States in Disk Geometry , 2021, Physical Review Applied.

[4]  Y. Tokura,et al.  Magnetic Skyrmion Materials. , 2020, Chemical reviews.

[5]  B. Dupé,et al.  Instability of skyrmions in magnetic fields , 2020 .

[6]  S. Blügel,et al.  Atomistic Perspective of Long Lifetimes of Small Skyrmions at Room Temperature. , 2020, Physical review letters.

[7]  S. Heinze,et al.  Toward room-temperature nanoscale skyrmions in ultrathin films , 2020, npj Computational Materials.

[8]  C. Muratov,et al.  A Quantitative Description of Skyrmions in Ultrathin Ferromagnetic Films and Rigidity of Degree $$\pm \,1$$ ± 1 , 2019 .

[9]  A. Rosch,et al.  Universality of annihilation barriers of large magnetic skyrmions in chiral and frustrated magnets , 2019, Physical Review B.

[10]  Thilo M. Simon,et al.  Unraveling the role of dipolar versus Dzyaloshinskii-Moriya interactions in stabilizing compact magnetic skyrmions , 2019, Physical Review B.

[11]  Yan Zhou,et al.  Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  R. Stamps,et al.  Path sampling for lifetimes of metastable magnetic skyrmions and direct comparison with Kramers' method , 2019, Physical Review B.

[13]  H. Fangohr,et al.  Nanoscale magnetic skyrmions and target states in confined geometries , 2019, Physical Review B.

[14]  Mathias Kläui,et al.  Perspective: Magnetic skyrmions—Overview of recent progress in an active research field , 2018, Journal of Applied Physics.

[15]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[16]  G. Beach,et al.  Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications , 2018, Scientific Reports.

[17]  J. Sinova,et al.  Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy , 2018, Nature Communications.

[18]  R. Stamps,et al.  Thermal stability of metastable magnetic skyrmions: Entropic narrowing and significance of internal eigenmodes , 2018, Physical Review B.

[19]  H. Yuan,et al.  A theory on skyrmion size , 2018, 2018 IEEE International Magnetic Conference (INTERMAG).

[20]  J. Escrig,et al.  Distinct magnetic field dependence of Néel skyrmion sizes in ultrathin nanodots , 2017, Scientific Reports.

[21]  A. Wartelle,et al.  The skyrmion-bubble transition in a ferromagnetic thin film , 2017, 1712.03154.

[22]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017, 1712.07236.

[23]  C. Muratov A universal thin film model for Ginzburg–Landau energy with dipolar interaction , 2017, Calculus of Variations and Partial Differential Equations.

[24]  C. Muratov,et al.  Magnetic Domains in Thin Ferromagnetic Films with Strong Perpendicular Anisotropy , 2017, Archive for Rational Mechanics and Analysis.

[25]  Mark L. Vousden,et al.  Thermal stability and topological protection of skyrmions in nanotracks , 2016, Scientific Reports.

[26]  H. Jónsson,et al.  Mechanism and activation energy of magnetic skyrmion annihilation obtained from minimum energy path calculations , 2016 .

[27]  C. Muratov,et al.  Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii–Moriya interaction , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  R. Wiesendanger,et al.  Minimal radius of magnetic skyrmions: statics and dynamics , 2016, 1601.04898.

[29]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[30]  GABRIEL CHAVES-O’FLYNN,et al.  Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy , 2015 .

[31]  J. DeVries,et al.  Analysis , 2015, Journal of diabetes science and technology.

[32]  R. Wiesendanger,et al.  Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.

[33]  Hannes Jónsson,et al.  Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation , 2015, Comput. Phys. Commun..

[34]  C. Melcher Chiral skyrmions in the plane , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[36]  S. Heinze,et al.  Tailoring magnetic skyrmions in ultra-thin transition metal films , 2014, Nature Communications.

[37]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[38]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[39]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[40]  H. Braun Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons , 2012 .

[41]  U. Rößler,et al.  Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? , 2011, 1102.2726.

[42]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[43]  A. Hubert,et al.  The stability of vortex-like structures in uniaxial ferromagnets , 1999 .

[44]  A. Hubert,et al.  The Properties of Isolated Magnetic Vortices , 1994 .

[45]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[46]  A. Polyakov,et al.  Metastable States of Two-Dimensional Isotropic Ferromagnets , 1975 .

[47]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[48]  R. Schäfer,et al.  Magnetic domains , 1983 .

[49]  P. Broome,et al.  An Anthology of Modern French Poetry (1850–1950): Valéry , 1976 .