Edge Estimation with Independent Set Oracles

We study the task of estimating the number of edges in a graph, where the access to the graph is provided via an independent set oracle. Independent set queries draw motivation from group testing and have applications to the complexity of decision versus counting problems. We give two algorithms to estimate the number of edges in an n-vertex graph, using (i) polylog(n) bipartite independent set queries or (ii) n2/3 polylog(n) independent set queries.

[1]  Kitty Meeks,et al.  Approximately counting and sampling small witnesses using a colourful decision oracle , 2019, SODA.

[2]  Xi Chen,et al.  Nearly optimal edge estimation with independent set queries , 2020, SODA.

[3]  Arijit Ghosh,et al.  Hyperedge Estimation using Polylogarithmic Subset Queries , 2019, ArXiv.

[4]  Dana Ron,et al.  On approximating the number of k-cliques in sublinear time , 2017, STOC.

[5]  Holger Dell,et al.  Fine-grained reductions from approximate counting to decision , 2017, STOC.

[6]  Will Rosenbaum,et al.  On Sampling Edges Almost Uniformly , 2017, SOSA.

[7]  Ronitt Rubinfeld,et al.  Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling , 2017, Algorithmica.

[8]  Alon Orlitsky,et al.  Estimating the number of defectives with group testing , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[9]  Dana Ron,et al.  The Power of an Example , 2014, ACM Trans. Comput. Theory.

[10]  C. Seshadhri,et al.  A simpler sublinear algorithm for approximating the triangle count , 2015, ArXiv.

[11]  Dana Ron,et al.  Approximately Counting Triangles in Sublinear Time , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[12]  Sergio Cabello,et al.  Shortest paths in intersection graphs of unit disks , 2014, Comput. Geom..

[13]  Man Lung Yiu,et al.  Identifying the Most Connected Vertices in Hidden Bipartite Graphs Using Group Testing , 2013, IEEE Transactions on Knowledge and Data Engineering.

[14]  Sariel Har-Peled,et al.  Net and Prune , 2014, J. ACM.

[15]  Dana Ron,et al.  Comparing the strength of query types in property testing: The case of k-colorability , 2012, computational complexity.

[16]  Krzysztof Onak,et al.  A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size , 2011, SODA.

[17]  Dana Ron,et al.  Counting stars and other small subgraphs in sublinear time , 2010, SODA '10.

[18]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[19]  Dana Angluin,et al.  Learning a hidden graph using O(logn) queries per edge , 2008, J. Comput. Syst. Sci..

[20]  Dana Ron,et al.  Comparing the strength of query types in property testing: the case of testing k-colorability , 2008, SODA '08.

[21]  Nikhil Srivastava,et al.  Learning and Verifying Graphs Using Queries with a Focus on Edge Counting , 2007, ALT.

[22]  Uriel Feige,et al.  On Sums of Independent Random Variables with Unbounded Variance and Estimating the Average Degree in a Graph , 2006, SIAM J. Comput..

[23]  Fan Chung Graham,et al.  Concentration Inequalities and Martingale Inequalities: A Survey , 2006, Internet Math..

[24]  Dana Angluin,et al.  Learning a Hidden Hypergraph , 2005, J. Mach. Learn. Res..

[25]  Dana Ron,et al.  Approximating average parameters of graphs , 2008, Random Struct. Algorithms.

[26]  J. Ott,et al.  Complement Factor H Polymorphism in Age-Related Macular Degeneration , 2005, Science.

[27]  Boris Aronov,et al.  On approximating the depth and related problems , 2005, SODA '05.

[28]  Noga Alon,et al.  Learning a Hidden Subgraph , 2004, SIAM J. Discret. Math..

[29]  Dana Angluin,et al.  Learning a Hidden Graph Using O(log n) Queries Per Edge , 2004, COLT.

[30]  Aleksei V. Fishkin,et al.  Disk Graphs: A Short Survey , 2003, WAOA.

[31]  Noga Alon,et al.  Learning a hidden matching , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[32]  Vladimir Grebinski,et al.  Reconstructing a Hamiltonian Cycle by Querying the Graph: Application to DNA Physical Mapping , 1998, Discret. Appl. Math..

[33]  W. Swallow,et al.  Using group testing to estimate a proportion, and to test the binomial model. , 1990, Biometrics.

[34]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[35]  William H. Swallow,et al.  Group testing for estimating infection rates and probabilities of disease transmission , 1985 .

[36]  Larry J. Stockmeyer,et al.  The complexity of approximate counting , 1983, STOC.

[37]  Larry J. Stockmeyer The Complexity of Approximate Counting (Preliminary Version) , 1983, STOC 1983.

[38]  R. Dorfman The Detection of Defective Members of Large Populations , 1943 .