Imaging of chronic posttraumatic osteomyelitis

Abstract. Posttraumatic osteomyelitis is frequently characterized by chronicity and recurrent activation of infection. The diagnosis is usually made on the basis of clinical, laboratory, and imaging examinations. The conventional radiograph is the basic imaging study that provides important information about skeletal deformity, bone quality, identification of metallic implants, and consolidation of the former fracture site. Other imaging techniques are required to determine the grade of activity, to define the extent of infection and to delineate small sequestra, intraosseus fistula and abscesses. A variety of more sophisticated modalities, such as modern cross-sectional imaging and radionuclide studies, are available, and the decision to choose the most suitable method can be very difficult. This review gives an overview of definition, epidemiology, and pathophysiology of chronic posttraumatic osteomyelitis and discusses the value of currently used imaging modalities.

[1]  A. Widmer New developments in diagnosis and treatment of infection in orthopedic implants. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  W. G. Batte,et al.  Osteomyelitis of the foot: relative importance of primary and secondary MR imaging signs. , 1998, Radiology.

[3]  P. Holtom,et al.  Introduction to adult posttraumatic osteomyelitis of the tibia. , 1999, Clinical orthopaedics and related research.

[4]  G. Glatting,et al.  Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[5]  Frieda Feldman,et al.  Fat-suppressed MRI of musculoskeletal infection: fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images , 1997, Skeletal Radiology.

[6]  H. Biersack,et al.  Fluorine-18 fluorodeoxyglucose positron emission tomography in infectious bone diseases: results of histologically confirmed cases , 2000, European Journal of Nuclear Medicine.

[7]  S. Vinitski,et al.  Metallic artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques. , 1994, Radiology.

[8]  W. Steinbrich,et al.  Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies , 2000, Skeletal Radiology.

[9]  J. Ciampolini,et al.  Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? , 2000, Postgraduate medical journal.

[10]  A. Kaim,et al.  Ectopic hematopoietic bone marrow in the appendicular skeleton after trauma. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  W J Montgomery,et al.  Detection of osteomyelitis at fracture nonunion sites: comparison of two scintigraphic methods. , 1989, AJR. American journal of roentgenology.

[12]  G. V. von Schulthess,et al.  Chronic osteomyelitis of the femur: value of PET imaging , 2000, European Radiology.

[13]  M. A. al Shahed,et al.  Osteomyelitis: a review of currently used imaging techniques , 1999, European Radiology.

[14]  B. McNeil,et al.  Disease activity in osteomyelitis: role of radiography. , 1987, Radiology.

[15]  A. Alavi,et al.  Indium‐111 leukocyte scintigraphic detection of subclinical osteomyelitis complicating delayed and nonunion long bone fractures: A prospective study , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  D. Mitchell,et al.  Diagnosis of osteomyelitis: utility of fat-suppressed contrast-enhanced MR imaging. , 1993, Radiology.

[17]  M. Schweitzer,et al.  MR imaging of bone marrow disorders. , 1997, Radiologic clinics of North America.

[18]  S. Ehara,et al.  Complications of skeletal trauma. , 1997, Radiologic clinics of North America.

[19]  L. Lidgren,et al.  Technetium-99m-nanocolloid scintigraphy in orthopedic infections: a comparison with indium-111-labeled leukocytes. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  C. Perry,et al.  Accuracy of cultures of material from swabbing of the superficial aspect of the wound and needle biopsy in the preoperative assessment of osteomyelitis. , 1991, The Journal of bone and joint surgery. American volume.

[21]  G. Sfakianakis,et al.  Subacute and chronic bone infections: diagnosis using In-111, Ga-67 and Tc-99m MDP bone scintigraphy, and radiography. , 1985, Radiology.

[22]  J. Anthony,et al.  Update on chronic osteomyelitis. , 1991, Clinics in Plastic Surgery.

[23]  G. V. von Schulthess,et al.  Infection imaging using whole-body FDG-PET , 2000, European Journal of Nuclear Medicine.

[24]  D. Tsukayama Pathophysiology of posttraumatic osteomyelitis. , 1999, Clinical orthopaedics and related research.

[25]  Y Akashi,et al.  FDG-PET in infectious lesions: The detection and assessment of lesion activity , 1996, Annals of nuclear medicine.

[26]  T. Bischof,et al.  Das Magnetresonanzverfahren in der Diagnostik der Osteomyelitis. Stellenwert und Vergleich mit der Shelettszintigraphie , 1991 .

[27]  T. Jung,et al.  Das Magnetresonanzverfahren in der Diagnostik der Osteomyelitis , 1991 .

[28]  R. Wahl,et al.  Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results , 1998, European Journal of Nuclear Medicine.

[29]  S. Seltzer Value of computed tomography in planning medical and surgical treatment of chronic osteomyelitis. , 1984, Journal of computer assisted tomography.

[30]  H. Biersack,et al.  Technetium-99m-labeled anti-granulocyte antibodies in suspected bone infections. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  G. Bergman,et al.  Gadolinium-DTPA-enhanced magnetic resonance imaging of musculoskeletal infectious processes , 1995, Skeletal radiology.

[32]  T. Sanders,et al.  Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. , 2000, Radiographics : a review publication of the Radiological Society of North America, Inc.

[33]  E. Oberhausen,et al.  Granulocyte Labelling Kit BW 250/183 , 1996, Nuklearmedizin.

[34]  M. Zlatkin,et al.  Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging. , 1989, Radiology.

[35]  B. Mock,et al.  Evaluation of complicating osteomyelitis with Tc-99m MDP, In-111 granulocytes, and Ga-67 citrate. , 1984, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  W. Eyler,et al.  Osteomyelitis of the diabetic foot: MR imaging-pathologic correlation. , 1997, Radiology.

[37]  R. Jeffrey,et al.  Chronic osteomyelitis examined by CT. , 1985, Radiology.

[38]  J. Lewin,et al.  Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. , 1996, AJR. American journal of roentgenology.