Cortical Areas Activated by Bilateral Galvanic Vestibular Stimulation

Abstract: The brain areas activated by bilateral galvanic vestibular stimulation (GVS) were studied using functional magnetic resonance imaging. In six human volunteers, GVS led to activation in the region of the temporoparietal junction, the central sulcus, and the anterior interior intraparietal sulcus, which may correspond to macaque areas PIVC, 3aV, and 2v, respectively. In addition, activation was found in premotor regions of the frontal lobe, presumably analogous to areas 6pa and 8a in the monkey. Since these areas were not detected in previous studies using caloric vestibular stimulation, they could be related to the modulation of otolith afferent activity by GVS. However, the simple paradigm used did not allow separation of the otolithic and semicircular canal effects of GVS. Further studies must be performed to clarify the question of cortical representation of the otolithic information in the human and monkey brain.

[1]  R. Johansson,et al.  Galvanic vestibular stimulation for analysis of postural adaptation and stability , 1995, IEEE Transactions on Biomedical Engineering.

[2]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[3]  L. Davis,et al.  THE GALVANIC FALLING REACTION IN PATIENTS WITH VERIFIED INTRACRANIAL NEOPLASMS , 1936 .

[4]  L. Katz,et al.  Sex differences in the functional organization of the brain for language , 1995, Nature.

[5]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[6]  S. Petersen,et al.  PET activation of posterior temporal regions during auditory word presentation and verb generation. , 1996, Cerebral cortex.

[7]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[8]  O. Grüsser,et al.  Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey , 1994, The Journal of comparative neurology.

[9]  D. Schwarz,et al.  Vestibular cortical projection in the rabbit , 1973, The Journal of comparative neurology.

[10]  V. Henn Loss of vertical rapid eye movements after kainic acid lesions in the rostral mesencephalon in the rhesus monkey , 1983 .

[11]  U. W. Buettner,et al.  Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation , 1978, Brain Research.

[12]  O. Grüsser,et al.  Cortico‐cortical connections and cytoarchitectonics of the primate vestibular cortex: A study in squirrel monkeys (Saimiri sciureus) , 1992, The Journal of comparative neurology.

[13]  Karl J. Friston,et al.  Distribution of cortical neural networks involved in word comprehension and word retrieval. , 1991, Brain : a journal of neurology.

[14]  D E Angelaki,et al.  Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation. , 1992, Journal of neurophysiology.

[15]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[16]  Richard S. J. Frackowiak,et al.  The neural correlates of the verbal component of working memory , 1993, Nature.

[17]  D E Angelaki,et al.  Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation. , 1993, Journal of neurophysiology.

[18]  Otto-Joachim Grüsser,et al.  Neuronal Responses in the Parieto — Insular Vestibular Cortex of Alert Java Monkeys (Maccaca Fascicularis) , 1982 .

[19]  O B Paulson,et al.  Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation. , 1985, Brain : a journal of neurology.

[20]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[21]  Alain Berthoz,et al.  A fronto-parietal system for computing the egocentric spatial frame of reference in humans , 1999, Experimental Brain Research.

[22]  E. Spiegel,et al.  RESPONSE OF THE LABYRINTHINE APPARATUS TO ELECTRICAL STIMULATION: SITE OF ACTION; FARADIC STIMULATION; INVERSE EFFECTS OF ANODIC AND CATHODIC STIMULATION , 1943 .

[23]  A Berthoz,et al.  Cortical Control of Vestibular Memory‐Guided Saccades a , 1992, Annals of the New York Academy of Sciences.

[24]  L. Nashner,et al.  Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. , 1974, Brain research.

[25]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[26]  Ernest Dzendolet,et al.  Sinusoidal Electrical Stimulation of the Human Vestibular Apparatus , 1963, Perceptual and motor skills.

[27]  J. Goldberg,et al.  Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. , 1984, Journal of neurophysiology.

[28]  W PENFIELD,et al.  LI Vestibular Sensation and the Cerebral Cortex , 1957, The Annals of otology, rhinology, and laryngology.

[29]  K. Mizukoshi,et al.  Retro-labyrinthine disorders detected by galvanic body sway responses in routine equilibrium examinations. , 1989, Acta oto-laryngologica. Supplementum.

[30]  O. Grüsser,et al.  Corticofugal projections to the vestibular nuclei in squirrel monkeys: Further evidence of multiple cortical vestibular fields , 1993, The Journal of comparative neurology.

[31]  J F Iles,et al.  Vestibular‐evoked postural reactions in man and modulation of transmission in spinal reflex pathways. , 1992, The Journal of physiology.

[32]  P. Cavallari,et al.  Effects of transmastoid electrical stimulation on the triceps brachii EMG in man. , 1990, Neuroreport.

[33]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[34]  A. Berthoz,et al.  fMRI study of voluntary saccadic eye movements in humans , 1996, NeuroImage.

[35]  Bernard H. Smith Vestibular disturbances in epilepsy , 1960, Neurology.

[36]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .

[37]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[38]  J. Folkerts,et al.  Displacement of the body's centre of gravity at galvanic stimulation of the labyrinth. , 1971, Confinia neurologica.

[39]  C. R. Pfaltz,et al.  Galvanic test in central vestibular lesions. , 1968, Acta oto-laryngologica.

[40]  D. Schwarz,et al.  Rhesus Monkey Vestibular Cortex: A Bimodal Primary Projection Field , 1971, Science.

[41]  O J Grüsser,et al.  Localization and responses of neurones in the parieto‐insular vestibular cortex of awake monkeys (Macaca fascicularis). , 1990, The Journal of physiology.