Coherent excitation of vibrational modes in metallic nanoparticles.

Excitation of metal nanoparticles with subpicosecond laser pulses causes a rapid increase in the lattice temperature, which can impulsively excite the phonon modes of the particle that correlate with the expansion coordinates. The vibrational periods depend on the size, shape, and elastic constants of the particles. Thus, time-resolved spectroscopy can be used to examine the material properties of nanometer-sized objects. This review provides a brief overview of the steady-state and time-resolved electronic spectroscopy of metal particles, which is important for understanding why vibrational motion appears in transient absorption traces. I also describe how the vibrational modes observed in the experiments are assigned, and what information can be obtained from the measurements. Our work has been mainly concerned with noble metal particles (gold and silver) in aqueous solution. The different shapes that have been examined to date include spheres, rods, and triangles, all with different sizes.

[1]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[2]  F. Wise,et al.  COHERENT ACOUSTIC PHONONS IN A SEMICONDUCTOR QUANTUM DOT , 1997 .

[3]  S. Silvestri,et al.  SIZE-DEPENDENT DYNAMICS OF COHERENT ACOUSTIC PHONONS IN NANOCRYSTAL QUANTUM DOTS , 1999 .

[4]  A. Arbouet,et al.  Acoustic vibrations of metal nanoparticles: high order radial mode detection , 2004 .

[5]  Berg,et al.  Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles , 2000, Physical review letters.

[6]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[7]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[8]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[9]  Wei Qian,et al.  The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling. , 2005, The journal of physical chemistry. B.

[10]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[11]  I. B. Martini,et al.  Observation of acoustic quantum beats in nanometer sized Au particles , 1998 .

[12]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[13]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[14]  J. Weertman Hall-Petch strengthening in nanocrystalline metals , 1993 .

[15]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[16]  M. Broyer,et al.  Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles , 2004 .

[17]  Binghai Yan,et al.  Comment on: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectricconstant by Link S. et al. , 2003 .

[18]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[19]  Ultrafast optical relaxation dynamics in metallic nanoparticles: from bulk-like toward spatial confinement regime , 2000 .

[20]  C. Voisin,et al.  Coherent acoustic mode oscillation and damping in silver nanoparticles , 1999 .

[21]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[22]  M. Orrit,et al.  Far-field optical microscopy of single metal nanoparticles. , 2005, Accounts of chemical research.

[23]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[24]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[25]  U. Grassano,et al.  d bands position and width in gold from very low temperature thermomodulation measurements , 1973 .

[26]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[27]  D. Belitskus Fiber and Whisker Reinforced Ceramics for Structural Applications , 1993 .

[28]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[29]  Christophe Voisin,et al.  Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles , 2001 .

[30]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[31]  P. Mulvaney,et al.  Determination of the elastic constants of gold nanorods produced by seed mediated growth , 2004 .

[32]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[33]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[34]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[35]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[36]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[37]  L. Marks Experimental studies of small particle structures , 1994 .

[38]  Gary L. Eesley,et al.  Observation of Nonequilibrium Electron Heating in Copper , 1983 .

[39]  Thaddeus J. Norman,et al.  Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates. , 2003, Journal of the American Chemical Society.

[40]  M. Pileni,et al.  Structural investigations of copper nanorods by high-resolution TEM , 2000 .

[41]  A. Haes,et al.  A unified view of propagating and localized surface plasmon resonance biosensors , 2004, Analytical and bioanalytical chemistry.

[42]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[43]  Thomas A. Klar,et al.  Gold nanoshells improve single nanoparticle molecular sensors , 2004 .

[44]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[45]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[46]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[47]  G. Hartland,et al.  Coherent Excitation of Acoustic Breathing Modes in Bimetallic Core−Shell Nanoparticles , 2000 .

[48]  Paul G. Sanders,et al.  Elastic and tensile behavior of nanocrystalline copper and palladium , 1997 .

[49]  G. Pharr,et al.  On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying , 1995 .

[50]  S. Nepijko,et al.  Growth of rodlike silver nanoparticles by vapor deposition of small clusters. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  S. Nepijko,et al.  Composition and lattice structure of fivefold twinned nanorods of silver , 2002 .

[52]  Gregory V. Hartland,et al.  Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy , 2004 .

[53]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[54]  Paul Mulvaney,et al.  Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. , 2003, Journal of the American Chemical Society.

[55]  Wei Qian,et al.  Coherent Vibrational Oscillation in Gold Prismatic Monolayer Periodic Nanoparticle Arrays , 2004 .

[56]  Younan Xia,et al.  Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence , 2003 .

[57]  G. Hartland,et al.  Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles , 1998 .

[58]  W. Qian,et al.  Femtosecond studies of coherent acoustic phonons in gold nanoparticles embedded in TiO2 thin films , 2000 .

[59]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[60]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[61]  M. Quinten,et al.  Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV , 1996 .

[62]  Hristina Petrova,et al.  Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures , 2004 .

[63]  David A. Schultz,et al.  Single-target molecule detection with nonbleaching multicolor optical immunolabels. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Pileni,et al.  Is the anion the major parameter in the shape control of nanocrystals , 2003 .

[65]  Horace Lamb,et al.  On the Vibrations of an Elastic Sphere , 1881 .

[66]  S. Xie,et al.  Transmission-Electron-Microscopy Study on Fivefold Twinned Silver Nanorods , 2004 .

[67]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[68]  A Paul Alivisatos,et al.  Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. , 2005, Nano letters.

[69]  M. El-Sayed,et al.  Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy , 1997 .

[70]  L. Zhigilei,et al.  Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description † , 2001 .

[71]  Christopher Hammond The Basics of Crystallography and Diffraction , 1997 .

[72]  L. Zhigilei,et al.  Limit of overheating and the threshold behavior in laser ablation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  John E. Sader,et al.  Softening of the symmetric breathing mode in gold particles by laser-induced heating , 2003 .

[74]  Guglielmo Lanzani,et al.  COHERENT ACOUSTIC OSCILLATIONS IN METALLIC NANOPARTICLES GENERATED WITH FEMTOSECOND OPTICAL PULSES , 1997 .

[75]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[76]  M. El-Sayed,et al.  Picosecond Dynamics of Colloidal Gold Nanoparticles , 1996 .

[77]  A. Henglein,et al.  Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles , 2000 .

[78]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[79]  Fujimoto,et al.  Femtosecond electronic heat-transport dynamics in thin gold films. , 1987, Physical review letters.

[80]  A. Lagendijk,et al.  Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. , 1995, Physical review. B, Condensed matter.

[81]  Philippe Guyot-Sionnest,et al.  Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods , 2004 .

[82]  E. R. Thoen,et al.  Coherent acoustic phonons in PbTe quantum dots , 1998 .