Next station in microarray data analysis: GEPAS
暂无分享,去创建一个
Joaquín Dopazo | Joaquín Tárraga | Javier Herrero | Fátima Al-Shahrour | Pablo Minguez | Eva Alloza | David Montaner | Jaime Huerta-Cepas | Jordi Burguet-Castell | Juan M. Vaquerizas | Lucía Conde | Javier Vera | Sach Mukherjee | Joan Valls | Miguel A. G. Pujana | J. Vaquerizas | J. Dopazo | Javier Herrero | J. Tárraga | M. Pujana | J. Huerta-Cepas | D. Montaner | F. Al-Shahrour | J. Valls | S. Mukherjee | Pablo Minguez | J. Burguet-Castell | Eva Alloza | L. Conde | P. Minguez | J. Vera | Joaquín Tárraga
[1] Richard Simon,et al. Roadmap for developing and validating therapeutically relevant genomic classifiers. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[2] X. Cui,et al. Statistical tests for differential expression in cDNA microarray experiments , 2003, Genome Biology.
[3] Joaquín Dopazo,et al. PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level , 2004, Nucleic Acids Res..
[4] M. Vidal,et al. Integrating 'omic' information: a bridge between genomics and systems biology. , 2003, Trends in genetics : TIG.
[5] I. Langner. Survival Analysis: Techniques for Censored and Truncated Data , 2006 .
[6] Christian A. Rees,et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[7] B. De Moor,et al. Comparison and meta-analysis of microarray data: from the bench to the computer desk. , 2003, Trends in genetics : TIG.
[8] Stephen J. Roberts,et al. Data-adaptive test statistics for microarray data , 2005, ECCB/JBI.
[9] A. Khodursky,et al. Functional Genomics: Methods And Protocols , 2007 .
[10] R. Tibshirani,et al. Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[11] D. Botstein,et al. Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[12] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[13] Patrick G Buckley,et al. Genomic microarrays in the spotlight. , 2004, Trends in genetics : TIG.
[14] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[15] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[16] Joaquín Dopazo,et al. Data Analysis and Visualization in Genomics and Proteomics , 2005 .
[17] Joaquín Dopazo,et al. New Challenges in Gene Expression Data Analysis and the Extended GEPAS , 2004, Spanish Bioinformatics Conference.
[18] C. Nusbaum,et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. , 1998, Science.
[19] Kathleen F. Kerr,et al. Standardizing global gene expression analysis between laboratories and across platforms , 2005, Nature Methods.
[20] Joaquín Dopazo,et al. Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information , 2005, Bioinform..
[21] R. Tibshirani,et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[22] Benjamin M. Bolstad,et al. affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..
[23] Daniel Pinkel,et al. Genomic microarrays in human genetic disease and cancer. , 2003, Human molecular genetics.
[24] Joaquín Dopazo,et al. BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments , 2005, Nucleic Acids Res..
[25] Jean YH Yang,et al. Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.
[26] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[27] F. Baas,et al. The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.
[28] Y. Benjamini,et al. THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .
[29] C M Kendziorski,et al. On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles , 2003, Statistics in medicine.
[30] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .
[31] Joaquín Dopazo,et al. Gene expression data preprocessing , 2003, Bioinform..
[32] John D. Storey,et al. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach , 2004 .
[33] M. Radmacher,et al. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.
[34] Joaquín Dopazo,et al. PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes , 2005, Nucleic Acids Res..
[35] Joaquín Dopazo,et al. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments , 2006, Nucleic Acids Res..
[36] Joaquín Dopazo,et al. GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data , 2005, Nucleic Acids Res..
[37] Francisco Azuaje,et al. A cluster validity framework for genome expression data , 2002, Bioinform..
[38] Pierre Baldi,et al. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..
[39] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[40] S. Dudoit,et al. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .
[41] J. Dopazo,et al. Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a Phylogenetic Tree , 1997, Journal of Molecular Evolution.
[42] Purvesh Khatri,et al. Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..
[43] John D. Storey,et al. Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[44] Pablo Tamayo,et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[45] Brian D. Ripley,et al. Pattern Recognition and Neural Networks , 1996 .
[46] Alfonso Valencia,et al. A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..
[47] T. Liesegang. The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Caron H, ∗ van Schaik B, van der Mee M, et al. Science 2001;291:1289–1292. , 2001 .
[48] Yudong D. He,et al. Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.
[49] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure , 1979 .
[50] Joaquín Dopazo,et al. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..
[51] Joaquín Dopazo,et al. Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns. , 2002, Journal of proteome research.
[52] Geoffrey J McLachlan,et al. Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[53] Joaquín Dopazo,et al. DNMAD: web-based diagnosis and normalization for microarray data , 2004, Bioinform..
[54] Joaquín Dopazo,et al. GEPAS: a web-based resource for microarray gene expression data analysis , 2003, Nucleic Acids Res..