Next station in microarray data analysis: GEPAS

The Gene Expression Profile Analysis Suite (GEPAS) has been running for more than four years. During this time it has evolved to keep pace with the new interests and trends in the still changing world of microarray data analysis. GEPAS has been designed to provide an intuitive although powerful web-based interface that offers diverse analysis options from the early step of preprocessing (normalization of Affymetrix and two-colour microarray experiments and other preprocessing options), to the final step of the functional annotation of the experiment (using Gene Ontology, pathways, PubMed abstracts etc.), and include different possibilities for clustering, gene selection, class prediction and array-comparative genomic hybridization management. GEPAS is extensively used by researchers of many countries and its records indicate an average usage rate of 400 experiments per day. The web-based pipeline for microarray gene expression data, GEPAS, is available at .

[1]  Richard Simon,et al.  Roadmap for developing and validating therapeutically relevant genomic classifiers. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  X. Cui,et al.  Statistical tests for differential expression in cDNA microarray experiments , 2003, Genome Biology.

[3]  Joaquín Dopazo,et al.  PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level , 2004, Nucleic Acids Res..

[4]  M. Vidal,et al.  Integrating 'omic' information: a bridge between genomics and systems biology. , 2003, Trends in genetics : TIG.

[5]  I. Langner Survival Analysis: Techniques for Censored and Truncated Data , 2006 .

[6]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. De Moor,et al.  Comparison and meta-analysis of microarray data: from the bench to the computer desk. , 2003, Trends in genetics : TIG.

[8]  Stephen J. Roberts,et al.  Data-adaptive test statistics for microarray data , 2005, ECCB/JBI.

[9]  A. Khodursky,et al.  Functional Genomics: Methods And Protocols , 2007 .

[10]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[13]  Patrick G Buckley,et al.  Genomic microarrays in the spotlight. , 2004, Trends in genetics : TIG.

[14]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[15]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[16]  Joaquín Dopazo,et al.  Data Analysis and Visualization in Genomics and Proteomics , 2005 .

[17]  Joaquín Dopazo,et al.  New Challenges in Gene Expression Data Analysis and the Extended GEPAS , 2004, Spanish Bioinformatics Conference.

[18]  C. Nusbaum,et al.  Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. , 1998, Science.

[19]  Kathleen F. Kerr,et al.  Standardizing global gene expression analysis between laboratories and across platforms , 2005, Nature Methods.

[20]  Joaquín Dopazo,et al.  Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information , 2005, Bioinform..

[21]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[23]  Daniel Pinkel,et al.  Genomic microarrays in human genetic disease and cancer. , 2003, Human molecular genetics.

[24]  Joaquín Dopazo,et al.  BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments , 2005, Nucleic Acids Res..

[25]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[26]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[27]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[28]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[29]  C M Kendziorski,et al.  On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles , 2003, Statistics in medicine.

[30]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[31]  Joaquín Dopazo,et al.  Gene expression data preprocessing , 2003, Bioinform..

[32]  John D. Storey,et al.  Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach , 2004 .

[33]  M. Radmacher,et al.  Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.

[34]  Joaquín Dopazo,et al.  PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes , 2005, Nucleic Acids Res..

[35]  Joaquín Dopazo,et al.  BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments , 2006, Nucleic Acids Res..

[36]  Joaquín Dopazo,et al.  GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data , 2005, Nucleic Acids Res..

[37]  Francisco Azuaje,et al.  A cluster validity framework for genome expression data , 2002, Bioinform..

[38]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[39]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[40]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[41]  J. Dopazo,et al.  Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a Phylogenetic Tree , 1997, Journal of Molecular Evolution.

[42]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[43]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[46]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[47]  T. Liesegang The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Caron H, ∗ van Schaik B, van der Mee M, et al. Science 2001;291:1289–1292. , 2001 .

[48]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[49]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[50]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..

[51]  Joaquín Dopazo,et al.  Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns. , 2002, Journal of proteome research.

[52]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Joaquín Dopazo,et al.  DNMAD: web-based diagnosis and normalization for microarray data , 2004, Bioinform..

[54]  Joaquín Dopazo,et al.  GEPAS: a web-based resource for microarray gene expression data analysis , 2003, Nucleic Acids Res..