Automatic control of phase synchronization in coupled complex oscillators

We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, our approach supposes the existence of a special controller, whose input is given by a quadratic form of the coordinates of the individual systems and its output is a result of the application of a linear differential operator. Using several examples we demonstrate the effectiveness of our approach to achieve controlled phase synchronization.

[1]  Grigory V. Osipov,et al.  Stability, Structures and Chaos in Nonlinear Synchronization Networks , 1995 .

[2]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[3]  Stability , 1973 .

[4]  Tim C. Newell,et al.  Synchronization of chaos using proportional feedback. , 1994 .

[5]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[6]  Y. Aizawa Synergetic Approach to the Phenomena of Mode-Locking in Nonlinear Systems , 1976 .

[7]  H. Nijmeijer,et al.  Cooperative oscillatory behavior of mutually coupled dynamical systems , 2001 .

[8]  E. Stone,et al.  Frequency entrainment of a phase coherent attractor , 1992 .

[9]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[10]  P. Alstrøm,et al.  Collective dynamics of coupled modulated oscillators with random pinning , 1992 .

[11]  J. Kurths,et al.  Automatic control of phase synchronization in coupled complex oscillators , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[14]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[15]  R Huerta,et al.  Dynamical encoding by networks of competing neuron groups: winnerless competition. , 2001, Physical review letters.

[16]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[17]  Grebogi,et al.  Synchronization of chaotic trajectories using control. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  E. Ott,et al.  Detecting phase synchronization in a chaotic laser array. , 2001, Physical review letters.

[19]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[20]  Belykh,et al.  Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  V N Belykh,et al.  Cluster synchronization modes in an ensemble of coupled chaotic oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Roy,et al.  Observation of antiphase states in a multimode laser. , 1990, Physical review letters.

[23]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[24]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[27]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[28]  L. Wilkens,et al.  Synchronization of the Noisy Electrosensitive Cells in the Paddlefish , 1999 .

[29]  H. Haken,et al.  A theoretical model of phase transitions in human hand movements , 2004, Biological Cybernetics.

[30]  Mehta,et al.  Controlling chaos to generate aperiodic orbits. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[31]  Lewi Stone,et al.  Chaos and phase Synchronization in Ecological Systems , 2000, Int. J. Bifurc. Chaos.

[32]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[33]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[34]  William C. Lindsey,et al.  SYNCHRONIZATION SYSTEMS in Communication and Control , 1972 .

[35]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[36]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[37]  J. Salz,et al.  Synchronization Systems in Communication and Control , 1973, IEEE Trans. Commun..

[38]  Ming-Chung Ho,et al.  Phase and anti-phase synchronization of two chaotic systems by using active control , 2002 .

[39]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[40]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[41]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[42]  Balth van der Pol Jun. Doct.Sc. LXXXV. On oscillation hysteresis in a triode generator with two degrees of freedom , 1922 .

[43]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[44]  Konnur Equivalence of Synchronization and Control of Chaotic Systems. , 1996, Physical review letters.

[45]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[46]  Hermann Haken,et al.  Synchronization in networks of limit cycle oscillators , 1996 .

[47]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[48]  Ramón Huerta,et al.  Dynamical encoding by networks of competing neuron groups: winnerless competition. , 2001 .

[49]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[50]  J. Kurths,et al.  Three types of transitions to phase synchronization in coupled chaotic oscillators. , 2003, Physical review letters.

[51]  Dmitry E. Postnov,et al.  SYNCHRONIZATION OF CHAOS , 1992 .

[52]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[53]  O. Rössler An equation for continuous chaos , 1976 .

[54]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.