Coherent two-dimensional electronic mass spectrometry

Coherent two-dimensional (2D) optical spectroscopy has revolutionized our ability to probe many types of couplings and ultrafast dynamics in complex quantum systems. The dynamics and function of any quantum system strongly depend on couplings to the environment. Thus, studying coherent interactions for different environments remains a topic of tremendous interest. Here we introduce coherent 2D electronic mass spectrometry that allows 2D measurements on effusive molecular beams and thus on quantum systems with minimum system–bath interaction and employ this to identify the major ionization pathway of 3d Rydberg states in NO2. Furthermore, we present 2D spectra of multiphoton ionization, disclosing distinct differences in the nonlinear response functions leading to the ionization products. We also realize the equivalent of spectrally resolved transient-absorption measurements without the necessity for acquiring weak absorption changes. Using time-of-flight detection introduces cations as an observable, enabling the 2D spectroscopic study on isolated systems of photophysical and photochemical reactions.Multidimensional spectroscopy is a powerful tool in exploring photo-induced dynamics and electron coupling processes in molecules. Here the authors demonstrate coherent two-dimensional electronic mass spectrometry on molecular beams and its application to photoionization studies of the NO2 molecule.

[1]  R. Hochstrasser,et al.  Two-dimensional spectroscopy at infrared and optical frequencies , 2007, Proceedings of the National Academy of Sciences.

[2]  Rick Trebino,et al.  Extremely simple single-prism ultrashort- pulse compressor. , 2006, Optics express.

[3]  T. Baumert,et al.  Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. , 2012, Angewandte Chemie.

[4]  V. Stavros,et al.  Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics. , 2016, Annual review of physical chemistry.

[5]  V. Blanchet,et al.  One-color coherent control in Cs2. Observation of 2.7 fs beats in the ionization signal , 1995 .

[6]  Martin T Zanni,et al.  How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. , 2009, Physical chemistry chemical physics : PCCP.

[7]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[8]  Andrei Tokmakoff,et al.  Coherent 2D IR Spectroscopy: Molecular Structure and Dynamics in Solution , 2003 .

[9]  Minhaeng Cho,et al.  Coherent two-dimensional optical spectroscopy. , 2008, Chemical reviews.

[10]  P. Hamm,et al.  Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy , 2006, Nature.

[11]  S. Pratt,et al.  Renner-Teller interactions in the vibrational autoionization of polyatomic molecules. , 2008, The Journal of chemical physics.

[12]  M. Arnold,et al.  Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy , 2015, Nature Communications.

[13]  T. Brixner,et al.  Coherent two-dimensional fluorescence micro-spectroscopy. , 2018, Optics express.

[14]  A. Schubert,et al.  Mapping of quantum phases by two-dimensional vibronic spectroscopy of wave-packet revivals , 2010 .

[15]  F. Stienkemeier,et al.  Spectroscopy and dynamics in helium nanodroplets , 2006, physics/0604090.

[16]  A. Tokmakoff,et al.  Transient 2D IR spectroscopy of ubiquitin unfolding dynamics , 2007, Proceedings of the National Academy of Sciences.

[17]  D. Jonas Two-dimensional femtosecond spectroscopy. , 2003, Annual review of physical chemistry.

[18]  Gregory D. Scholes,et al.  Crossing disciplines ‐ A view on two‐dimensional optical spectroscopy , 2014 .

[19]  A. Zewail,et al.  Femtosecond probing of molecular dynamics by mass-spectrometry in a molecular beam , 1991 .

[20]  Graham R. Fleming,et al.  Fluorescence‐detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase‐locked pulses , 1991 .

[21]  T. Baumert,et al.  Femtosecond pump-probe photoelectron spectroscopy: Mapping of vibrational wave-packet motion. , 1996 .

[22]  B. J. Whitaker,et al.  Dissociative multiphoton ionization of NO2 studied by time-resolved imaging. , 2004, The Journal of chemical physics.

[23]  E. Grant,et al.  Mode dependent vibrational autoionization of Rydberg states of NO2. II. Comparing the symmetric stretching and bending vibrations. , 2004, The Journal of chemical physics.

[24]  D. Zigmantas,et al.  In situ mapping of the energy flow through the entire photosynthetic apparatus. , 2016, Nature chemistry.

[25]  J. Semmlow,et al.  Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode. , 2005, Optics express.

[26]  A. Gandman,et al.  Two-Dimensional Fano Lineshapes in Ultrafast Vibrational Spectroscopy of Thin Molecular Layers on Plasmonic Arrays. , 2017, The journal of physical chemistry letters.

[27]  Rienk van Grondelle,et al.  Global and target analysis of time-resolved spectra. , 2004, Biochimica et biophysica acta.

[28]  A. Schubert,et al.  Two-dimensional vibronic spectroscopy of coherent wave-packet motion. , 2011, The Journal of chemical physics.

[29]  E. Grant,et al.  State-selective production of vibrationally excited NO2+ by double-resonant photoionization , 2004 .

[30]  Ingolf V. Hertel,et al.  Ultrafast dynamics in isolated molecules and molecular clusters , 2006 .

[31]  B. A. Mamyrin,et al.  The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution , 1973 .

[32]  Tobias Brixner,et al.  Rapid-scan coherent 2D fluorescence spectroscopy. , 2017, Optics express.

[33]  T. Pullerits,et al.  Coherent two-dimensional spectroscopy of a Fano model , 2016, 1605.08572.

[34]  F. Stienkemeier,et al.  Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples , 2015, 1509.01137.

[35]  S. Pratt,et al.  Vibrational autoionization in polyatomic molecules. , 1997, Annual review of physical chemistry.

[36]  Carlos R. Baiz,et al.  Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy. , 2008, Optics letters.

[37]  Michelle S. Vezie,et al.  Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells , 2016, Scientific Reports.

[38]  at]. , 2018, A Preface to Hardy.

[39]  G. Nardin,et al.  Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. , 2013, Optics express.

[40]  E. Grant,et al.  Multiphoton ionization of NO2: Spectroscopy and dynamics , 1981 .

[41]  Daniel B. Turner,et al.  Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells , 2009, Science.

[42]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[43]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[44]  Jennifer P Ogilvie,et al.  Experimental implementations of two-dimensional fourier transform electronic spectroscopy. , 2015, Annual review of physical chemistry.

[45]  T. Feurer,et al.  Pulse shaper assisted short laser pulse characterization , 2008 .

[46]  R. Lucchese,et al.  Spectral dependence of photoemission in multiphoton ionization of NO2 by femtosecond pulses in the 375-430 nm range. , 2017, Physical chemistry chemical physics : PCCP.

[47]  M. Duncan Spectroscopy and dynamics , 1993 .

[48]  H. Tan,et al.  Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy. , 2008, The Journal of chemical physics.

[49]  S. Mukamel,et al.  Optical multidimensional coherent spectroscopy , 2013 .

[50]  I. Powis,et al.  Detecting chirality in molecules by imaging photoelectron circular dichroism. , 2014, Physical chemistry chemical physics : PCCP.

[51]  C. Keitel,et al.  Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control , 2013, Science.

[52]  M. Mudrich,et al.  Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules. , 2015, Physical chemistry chemical physics : PCCP.

[53]  P. V. von Hippel,et al.  Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy , 2013, New Journal of Physics.

[54]  Peifang Tian,et al.  Femtosecond Phase-Coherent Two-Dimensional Spectroscopy , 2003, Science.

[55]  A. Zewail,et al.  Femtosecond real time probing of reactions XXII Kinetic description of probe absorption fluorescence depletion and mass spectrometry , 1996 .

[56]  S. Matsika,et al.  Following Ultrafast Radiationless Relaxation Dynamics With Strong Field Dissociative Ionization: A Comparison Between Adenine, Uracil, and Cytosine , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[57]  M. Janssen,et al.  Femtosecond time-resolved photoelectron-photoion coincidence imaging of multiphoton multichannel photodynamics in NO2. , 2008, The Journal of chemical physics.

[58]  Andrew H Marcus,et al.  Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. , 2007, The Journal of chemical physics.

[59]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[60]  Tõnu Pullerits,et al.  Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell , 2014, Nature Communications.

[61]  Graham R. Fleming,et al.  Two-dimensional spectroscopy of electronic couplings in photosynthesis , 2005, Nature.

[62]  C. Crespo-Hernández,et al.  Ultrafast excited-state dynamics in nucleic acids. , 2004, Chemical reviews.

[63]  D. Voronine,et al.  Probing the geometry dependence of molecular dimers with two-dimensional-vibronic spectroscopy. , 2009, The Journal of chemical physics.

[64]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[65]  Julia R Widom,et al.  Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS). , 2013, New journal of physics.

[66]  W. Domcke,et al.  Efficient calculation of time- and frequency-resolved four-wave-mixing signals. , 2009, Accounts of chemical research.

[67]  T. Brixner,et al.  Tracing the steps of photoinduced chemical reactions in organic molecules by coherent two-dimensional electronic spectroscopy using triggered exchange. , 2013, Physical review letters.

[68]  E. Grant,et al.  Mode-dependent vibrational autoionization of NO2 , 2003 .

[69]  T. Brixner,et al.  Multidimensional Electronic Spectroscopy of Photochemical Reactions. , 2015, Angewandte Chemie.

[70]  P. Hamm,et al.  Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[71]  Alán Aspuru-Guzik,et al.  Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[72]  T. Baumert,et al.  Femtosecond Pump-Probe Photoelectron Spectroscopy: Mapping of Vibrational Wave Packet Motion , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[73]  A. Zewail,et al.  Real-time femtosecond probing of "transition states" in chemical reactions , 1987 .

[74]  Christian Strüber,et al.  Coherent Two-Dimensional Nanoscopy , 2011, Science.

[75]  Gerber,et al.  Femtosecond time-resolved molecular multiphoton ionization: The Na2 system. , 1991, Physical review letters.

[76]  Alejandro Perdomo-Ortiz,et al.  Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy. , 2012, The journal of physical chemistry. B.