Localization of binary black hole mergers with known inclination

The localization of stellar-mass binary black hole mergers using gravitational waves is critical in understanding the properties of the binaries’ host galaxies, observing possible electromagnetic emission from the mergers, or using them as a cosmological distance ladder. The precision of this localization can be substantially increased with prior astrophysical information about the binary system. In particular, constraining the inclination of the binary can reduce the distance uncertainty of the source. Here, we present the first realistic set of localizations for binary black hole mergers, including different prior constraints on the binaries’ inclinations. We find that prior information on the inclination can reduce the localization volume by a factor of 3. We discuss two astrophysical scenarios of interest: (i) follow-up searches for beamed electromagnetic/neutrino counterparts and (ii) mergers in the accretion discs of active galactic nuclei.

[1]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[2]  P. Mészáros,et al.  High-energy neutrinos from the gravitational wave event GW150914 possibly associated with a short gamma-ray burst , 2016, 1602.08436.

[3]  Imre Bartos,et al.  GALAXY SURVEY ON THE FLY: PROSPECTS OF RAPID GALAXY CATALOGING TO AID THE ELECTROMAGNETIC FOLLOW-UP OF GRAVITATIONAL WAVE OBSERVATIONS , 2014, 1410.0677.

[4]  A. MacFadyen,et al.  Constraining the Outflow Structure of the Binary Neutron Star Merger Event GW170817/GRB170817A with a Markov Chain Monte Carlo Analysis , 2018, The Astrophysical Journal.

[5]  A. T. Deller,et al.  Superluminal motion of a relativistic jet in the neutron-star merger GW170817 , 2018, Nature.

[6]  V. Raymond,et al.  Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors , 2016, 1611.01122.

[7]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[8]  K. Toma,et al.  Evolution of an Accretion Disc in Binary Black Hole Systems , 2016, 1607.01964.

[9]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[10]  Davide Lazzati,et al.  SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES , 2016, 1602.05140.

[11]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[12]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[13]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[14]  J. Silk,et al.  ULTRAHIGH-ENERGY COSMIC RAYS AND BLACK HOLE MERGERS , 2016, 1602.06961.

[15]  V. Raymond,et al.  Measuring the spin of black holes in binary systems using gravitational waves. , 2014, Physical review letters.

[16]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[17]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[18]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[19]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[20]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[21]  B. A. Boom,et al.  Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. , 2018, Physical review letters.

[22]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[23]  H. Schmid,et al.  Spectropolarimetry of the borderline Seyfert 1 galaxy ESO 323-G077 ? , 2003, astro-ph/0304439.

[24]  S. Fairhurst,et al.  Constraining the Inclinations of Binary Mergers from Gravitational-wave Observations , 2018, The Astrophysical Journal.

[25]  A. MacFadyen,et al.  SYNTHETIC OFF-AXIS LIGHT CURVES FOR LOW-ENERGY GAMMA-RAY BURSTS , 2011, 1102.4571.

[26]  B.Sbarufatti,et al.  Swift follow-up of the gravitational wave source GW150914 , 2016, 1602.03868.

[27]  C. Palenzuela,et al.  Dual Jets from Binary Black Holes , 2010, Science.

[28]  I. Shoemaker,et al.  ULTRAFAST OUTFLOWS FROM BLACK HOLE MERGERS WITH A MINIDISK , 2016, 1602.06938.

[29]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[30]  Kaimuddin,et al.  The effect of shade on chlorophyll and anthocyanin content of upland red rice , 2018 .

[31]  J. Schmidt,et al.  A swirling jet in the quasar 1308+326 , 2017 .

[32]  A. King,et al.  Electromagnetic Signals Following Stellar-mass Black Hole Mergers , 2017, 1703.07794.

[33]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[34]  F. Marin A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements , 2014, 1404.2417.

[35]  K. Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. II. Relativistic Iron Kα Emission , 1996, astro-ph/9606169.

[36]  Alberto J. Castro-Tirado,et al.  Multi-messenger Observations of a Binary Neutron Star , 2017 .

[37]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[38]  S. Márka,et al.  AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers , 2019, The Astrophysical Journal.

[39]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[40]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[41]  Advanced LIGO , 2014, 1411.4547.

[42]  M. S. Shahriar,et al.  Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory , 2017, 1710.05839.

[43]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[44]  C. Ott,et al.  Gravitational Waves from Binary Black Hole Mergers inside Stars. , 2017, Physical review letters.

[45]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[46]  E. Burns,et al.  ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS , 2015, 1512.04464.

[47]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[48]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[49]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[50]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[51]  Abraham Loeb,et al.  ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO , 2016, 1602.04735.

[52]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[53]  Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers , 2017, Nature Communications.

[54]  M. Miller,et al.  Energetic constraints on electromagnetic signals from double black hole mergers , 2016, 1611.00764.

[55]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[56]  Xue-Bing Wu,et al.  Inclinations and Black Hole Masses of Seyfert 1 Galaxies , 2001, astro-ph/0109283.

[57]  B. Yanny,et al.  A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914 , 2016, 1602.04199.

[58]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[59]  M. Ruiz,et al.  Disks around merging binary black holes: From GW150914 to supermassive black holes. , 2018, Physical review. D..

[60]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[61]  S. Márka,et al.  How gravitational-wave observations can shape the gamma-ray burst paradigm , 2012, 1212.2289.

[62]  Duncan A. Brown,et al.  Nonspinning searches for spinning binaries in ground-based detector data: Amplitude and mismatch predictions in the constant precession cone approximation , 2012, 1203.6060.

[63]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[64]  H. Perets,et al.  Intermediate mass black holes in AGN discs – I. Production and growth , 2012, 1206.2309.

[65]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[66]  A. Melandri,et al.  Compact radio emission indicates a structured jet was produced by a binary neutron star merger , 2018, Science.