MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field

The Mars Atmosphere and Volatile Evolution (MAVEN) observations show that the global spatial distribution of ions precipitating toward the Martian upper atmosphere has a highly asymmetric pattern relative to the upstream solar wind electric field. MAVEN observations indicate that precipitating planetary heavy ion fluxes measured in the downward solar wind electric field (−E) hemisphere are generally larger than those measured in the upward electric field (+E) hemisphere, as expected from modeling. The −E (+E) hemispheres are defined by the direction of solar wind electric field pointing toward (or away from) the planet. On the other hand, such an asymmetric precipitating pattern relative to the solar wind electric field is less clear around the terminator. Strong precipitating fluxes are sometimes found even in the +E field hemisphere under either strong upstream solar wind dynamic pressure or strong interplanetary magnetic field periods. The results imply that those intense precipitating ion fluxes are observed when the gyroradii of pickup ions are estimated to be relatively small compared with the planetary scale. Therefore, the upstream solar wind parameters are important factors in controlling the global spatial pattern and flux of ions precipitating into the Martian upper atmosphere.

[1]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[2]  J. Luhmann,et al.  Dynamics of planetary ions in the induced magnetospheres of Venus and Mars , 2016 .

[3]  B. Jakosky,et al.  O+ ion beams reflected below the Martian bow shock: MAVEN observations , 2016 .

[4]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[5]  B. Jakosky,et al.  MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .

[6]  B. Jakosky,et al.  MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars , 2015 .

[7]  Bruce M. Jakosky,et al.  Initial results from the MAVEN mission to Mars , 2015 .

[8]  B. Jakosky,et al.  Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN , 2015 .

[9]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[10]  D. Curtis,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[11]  F. LeBlanc,et al.  Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN , 2015 .

[12]  M. Liemohn,et al.  Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape , 2015 .

[13]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[14]  W. Ip,et al.  Statistical studies on Mars atmospheric sputtering by precipitating pickup O+: Preparation for the MAVEN mission , 2015 .

[15]  M. Grott,et al.  A spherical harmonic model of the lithospheric magnetic field of Mars , 2014 .

[16]  W. Ip,et al.  Modeling of the O+ pickup ion sputtering efficiency dependence on solar wind conditions for the Martian atmosphere , 2014 .

[17]  S. Barabash,et al.  Statistical properties of planetary heavy‐ion precipitations toward the Martian ionosphere obtained from Mars Express , 2013 .

[18]  R. Jarvinen,et al.  Hemispheric asymmetries of the Venus plasma environment , 2013 .

[19]  S. Barabash,et al.  Reduced proton and alpha particle precipitations at Mars during solar wind pressure pulses: Mars Express results , 2013 .

[20]  Robert E. Johnson,et al.  The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions , 2013 .

[21]  S. Barabash,et al.  A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations , 2013 .

[22]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[23]  F. Leblanc,et al.  Mars exospheric thermal and non-thermal components: Seasonal and local variations , 2012 .

[24]  Yoshifumi Futaana,et al.  A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations , 2012 .

[25]  S. Barabash,et al.  Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars , 2012, Earth, Planets and Space.

[26]  F. Duru,et al.  Ion Energization and Escape on Mars and Venus , 2011 .

[27]  R. Lundin Ion Acceleration and Outflow from Mars and Venus: An Overview , 2011 .

[28]  X. Fang,et al.  Oxygen ion precipitation in the Martian atmosphere and its relation with the crustal magnetic fields , 2011 .

[29]  S. Barabash,et al.  Heavy‐ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA‐3 observations , 2011 .

[30]  R. Jarvinen,et al.  Widely different characteristics of oxygen and hydrogen ion escape from Venus , 2010 .

[31]  S. Barabash,et al.  Advanced method to derive the IMF direction near Mars from cycloidal proton distributions , 2008 .

[32]  R. E. Johnson,et al.  Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .

[33]  H. Hayakawa,et al.  IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express , 2007 .

[34]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[35]  M. Maggi,et al.  The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .

[36]  S. Barabash,et al.  Hydrogen exosphere at Mars: Pickup protons and their acceleration at the bow shock , 2006 .

[37]  D. Mitchell,et al.  The magnetic field draping direction at Mars from April 1999 through August 2004 , 2006 .

[38]  François Leblanc,et al.  Mars atmospheric escape and evolution; interaction with the solar wind , 2004 .

[39]  R. Trautner,et al.  The Mars Express mission: an overview , 2004 .

[40]  F. Leblanc,et al.  Role of molecular species in pickup ion sputtering of the Martian atmosphere , 2002 .

[41]  F. Leblanc,et al.  Sputtering of the Martian atmosphere by solar wind pick-up ions , 2001 .

[42]  E. Kallio,et al.  Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars‐solar wind interaction , 2001 .

[43]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[44]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[45]  S. Brecht Solar wind proton deposition into the Martian atmosphere , 1997 .

[46]  Robert E. Johnson,et al.  Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions , 1992 .

[47]  C. Russell,et al.  Picked‐up protons near Mars: Phobos observations , 1991 .

[48]  J. Luhmann,et al.  Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences , 1991 .

[49]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[50]  M. Maggi,et al.  The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission , 2006 .