MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field
暂无分享,去创建一个
B. Jakosky | F. Leblanc | J. Connerney | R. Livi | J. Luhmann | G. DiBraccio | J. Halekas | K. Seki | S. Curry | D. Brain | J. Mcfadden | T. Hara | Y. Harada
[1] B. Jakosky,et al. Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .
[2] J. Luhmann,et al. Dynamics of planetary ions in the induced magnetospheres of Venus and Mars , 2016 .
[3] B. Jakosky,et al. O+ ion beams reflected below the Martian bow shock: MAVEN observations , 2016 .
[4] Bruce M. Jakosky,et al. The Solar Wind Ion Analyzer for MAVEN , 2015 .
[5] B. Jakosky,et al. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .
[6] B. Jakosky,et al. MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars , 2015 .
[7] Bruce M. Jakosky,et al. Initial results from the MAVEN mission to Mars , 2015 .
[8] B. Jakosky,et al. Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN , 2015 .
[9] B. Jakosky,et al. The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .
[10] D. Curtis,et al. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.
[11] F. LeBlanc,et al. Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN , 2015 .
[12] M. Liemohn,et al. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape , 2015 .
[13] J. Connerney,et al. The MAVEN Magnetic Field Investigation , 2015 .
[14] W. Ip,et al. Statistical studies on Mars atmospheric sputtering by precipitating pickup O+: Preparation for the MAVEN mission , 2015 .
[15] M. Grott,et al. A spherical harmonic model of the lithospheric magnetic field of Mars , 2014 .
[16] W. Ip,et al. Modeling of the O+ pickup ion sputtering efficiency dependence on solar wind conditions for the Martian atmosphere , 2014 .
[17] S. Barabash,et al. Statistical properties of planetary heavy‐ion precipitations toward the Martian ionosphere obtained from Mars Express , 2013 .
[18] R. Jarvinen,et al. Hemispheric asymmetries of the Venus plasma environment , 2013 .
[19] S. Barabash,et al. Reduced proton and alpha particle precipitations at Mars during solar wind pressure pulses: Mars Express results , 2013 .
[20] Robert E. Johnson,et al. The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions , 2013 .
[21] S. Barabash,et al. A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations , 2013 .
[22] M. Kelley,et al. The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .
[23] F. Leblanc,et al. Mars exospheric thermal and non-thermal components: Seasonal and local variations , 2012 .
[24] Yoshifumi Futaana,et al. A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations , 2012 .
[25] S. Barabash,et al. Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars , 2012, Earth, Planets and Space.
[26] F. Duru,et al. Ion Energization and Escape on Mars and Venus , 2011 .
[27] R. Lundin. Ion Acceleration and Outflow from Mars and Venus: An Overview , 2011 .
[28] X. Fang,et al. Oxygen ion precipitation in the Martian atmosphere and its relation with the crustal magnetic fields , 2011 .
[29] S. Barabash,et al. Heavy‐ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA‐3 observations , 2011 .
[30] R. Jarvinen,et al. Widely different characteristics of oxygen and hydrogen ion escape from Venus , 2010 .
[31] S. Barabash,et al. Advanced method to derive the IMF direction near Mars from cycloidal proton distributions , 2008 .
[32] R. E. Johnson,et al. Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .
[33] H. Hayakawa,et al. IMF Direction Derived from Cycloid-Like Ion Distributions Observed by Mars Express , 2007 .
[34] Stas Barabash,et al. Martian Atmospheric Erosion Rates , 2007, Science.
[35] M. Maggi,et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .
[36] S. Barabash,et al. Hydrogen exosphere at Mars: Pickup protons and their acceleration at the bow shock , 2006 .
[37] D. Mitchell,et al. The magnetic field draping direction at Mars from April 1999 through August 2004 , 2006 .
[38] François Leblanc,et al. Mars atmospheric escape and evolution; interaction with the solar wind , 2004 .
[39] R. Trautner,et al. The Mars Express mission: an overview , 2004 .
[40] F. Leblanc,et al. Role of molecular species in pickup ion sputtering of the Martian atmosphere , 2002 .
[41] F. Leblanc,et al. Sputtering of the Martian atmosphere by solar wind pick-up ions , 2001 .
[42] E. Kallio,et al. Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars‐solar wind interaction , 2001 .
[43] Ness,et al. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.
[44] Ness,et al. Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.
[45] S. Brecht. Solar wind proton deposition into the Martian atmosphere , 1997 .
[46] Robert E. Johnson,et al. Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions , 1992 .
[47] C. Russell,et al. Picked‐up protons near Mars: Phobos observations , 1991 .
[48] J. Luhmann,et al. Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences , 1991 .
[49] B. Hultqvist,et al. First measurements of the ionospheric plasma escape from Mars , 1989, Nature.
[50] M. Maggi,et al. The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission , 2006 .