The Laser Interferometry Space Antenna: Unveiling the Millihertz Gravitational Wave Sky An Astro2020 White Paper lisa.nasa.gov

John Baker Jillian Bellovary Peter L. Bender Emanuele Berti Robert Caldwell Jordan Camp John W. Conklin Neil Cornish Curt Cutler Ryan DeRosa Michael Eracleous Elizabeth C. Ferrara Samuel Francis Martin Hewitson Kelly Holley-Bockelmann Ann Hornschemeier Craig Hogan Brittany Kamai Bernard J. Kelly Joey Shapiro Key Shane L. Larson NASA Goddard Space Flight Center CUNY-Queensborogh Community College University of Colorado Johns Hopkins University Dartmouth College NASA Goddard Space Flight Center University of Florida Montana State University NASA Goddard Space Flight Center NASA Jet Propulsaion Laboratory The Pennsylvania State University University of Maryland, College Park NASA Jet Propulsion Laboratory Albert Einstein Institute Hannover Vanderbilt University NASA Goddard Space Flight Center University of Chicago / Fermilab CalTech, Vanderbilt University University of Maryland Baltimore County University of Washington Bothell Northwestern University

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[3]  Martin Gohlke,et al.  In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. , 2019, Physical review letters.

[4]  T. Littenberg,et al.  Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  Gravitational-Wave Astronomy in the 2020s and Beyond: A view across the gravitational wave spectrum , 2019 .

[6]  K. Holley-Bockelmann,et al.  Disentangling nature from nurture: tracing the origin of seed black holes , 2019, 1904.09326.

[7]  Salvatore J. Vitale,et al.  Temperature stability in the sub-milliHertz band with LISA Pathfinder , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Guido Mueller,et al.  The Discovery Potential of Space-Based Gravitational Wave Astronomy , 2019, 1904.01438.

[9]  K. Holley-Bockelmann,et al.  Where are the Intermediate Mass Black Holes , 2019, 1903.08144.

[10]  K. Holley-Bockelmann,et al.  Astro2020 science white paper: The gravitational wave view of massive black holes , 2019, 1903.06867.

[11]  Shane L. Larson,et al.  Astro2020 Decadal Science White Paper: Gravitational Wave Survey of Galactic Ultra Compact Binaries , 2019 .

[12]  Ely Kovetz,et al.  Astro2020 Science White Paper: Cosmology with a Space-Based Gravitational Wave Observatory , 2019, 1903.04657.

[13]  E. Phinney,et al.  Multimessenger science opportunities with mHz gravitational waves , 2019, 1903.04417.

[14]  MIT,et al.  The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy , 2019, 1903.03686.

[15]  S. Gezari,et al.  An Arena for Multi-Messenger Astrophysics: Inspiral and Tidal Disruption of White Dwarfs by Massive Black Holes , 2019, 1902.06612.

[16]  David Robertson,et al.  LISA Pathfinder platform stability and drag-free performance , 2018, Physical Review D.

[17]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[18]  J. P. López-Zaragoza,et al.  Experimental results from the ST7 mission on LISA Pathfinder , 2018, Physical Review D.

[19]  Salvatore J. Vitale,et al.  Precision charge control for isolated free-falling test masses: LISA pathfinder results , 2018, Physical Review D.

[20]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[21]  G. Nelemans,et al.  LISA verification binaries with updated distances from Gaia Data Release 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  J. P. López-Zaragoza,et al.  Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz. , 2018, Physical review letters.

[23]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[24]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[25]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[26]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[27]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[28]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[29]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[30]  W. J. Weber,et al.  The Gravitational Universe , 2013, 1305.5720.

[31]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[32]  Michele Vallisneri,et al.  A LISA data-analysis primer , 2008, 0812.0751.

[33]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[34]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[35]  M. Vallisneri Geometric time delay interferometry , 2005, gr-qc/0504145.

[36]  Robert Eliot Spero,et al.  Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.

[37]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[38]  William M. Folkner,et al.  LISA orbit selection and stability , 1997 .