The Laser Interferometry Space Antenna: Unveiling the Millihertz Gravitational Wave Sky An Astro2020 White Paper lisa.nasa.gov
暂无分享,去创建一个
Robert Eliot Spero | K. Holley-Bockelmann | S. McWilliams | G. Mueller | D. Shoemaker | J. Camp | N. Cornish | B. Kamai | D. Shoemaker | R. Derosa | S. Larson | B. Ware | M. Eracleous | M. Hewitson | C. Hogan | P. Bender | J. Livas | E. Berti | R. Stebbins | M. Vallisneri | E. Ferrara | J. Ziemer | A. Hornschemeier | S. Sankar | J. Slutsky | P. Wass | P. Natarajan | K. Numata | A. Yu | R. Caldwell | J. Conklin | J. Schnittman | J. Baker | C. Cutler | I. Thorpe | N. Rioux | B. Kelly | J. Bellovary | Samuel P. Francis | S. Manthripragada | K. McKenzie | J. Shapiro | Thorpe
[1] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[2] Y. N. Liu,et al. Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).
[3] Martin Gohlke,et al. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. , 2019, Physical review letters.
[4] T. Littenberg,et al. Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations , 2019, Monthly Notices of the Royal Astronomical Society.
[5] Gravitational-Wave Astronomy in the 2020s and Beyond: A view across the gravitational wave spectrum , 2019 .
[6] K. Holley-Bockelmann,et al. Disentangling nature from nurture: tracing the origin of seed black holes , 2019, 1904.09326.
[7] Salvatore J. Vitale,et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder , 2019, Monthly Notices of the Royal Astronomical Society.
[8] Guido Mueller,et al. The Discovery Potential of Space-Based Gravitational Wave Astronomy , 2019, 1904.01438.
[9] K. Holley-Bockelmann,et al. Where are the Intermediate Mass Black Holes , 2019, 1903.08144.
[10] K. Holley-Bockelmann,et al. Astro2020 science white paper: The gravitational wave view of massive black holes , 2019, 1903.06867.
[11] Shane L. Larson,et al. Astro2020 Decadal Science White Paper: Gravitational Wave Survey of Galactic Ultra Compact Binaries , 2019 .
[12] Ely Kovetz,et al. Astro2020 Science White Paper: Cosmology with a Space-Based Gravitational Wave Observatory , 2019, 1903.04657.
[13] E. Phinney,et al. Multimessenger science opportunities with mHz gravitational waves , 2019, 1903.04417.
[14] MIT,et al. The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy , 2019, 1903.03686.
[15] S. Gezari,et al. An Arena for Multi-Messenger Astrophysics: Inspiral and Tidal Disruption of White Dwarfs by Massive Black Holes , 2019, 1902.06612.
[16] David Robertson,et al. LISA Pathfinder platform stability and drag-free performance , 2018, Physical Review D.
[17] B. A. Boom,et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .
[18] J. P. López-Zaragoza,et al. Experimental results from the ST7 mission on LISA Pathfinder , 2018, Physical Review D.
[19] Salvatore J. Vitale,et al. Precision charge control for isolated free-falling test masses: LISA pathfinder results , 2018, Physical Review D.
[20] D Huet,et al. GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.
[21] G. Nelemans,et al. LISA verification binaries with updated distances from Gaia Data Release 2 , 2018, Monthly Notices of the Royal Astronomical Society.
[22] J. P. López-Zaragoza,et al. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μHz. , 2018, Physical review letters.
[23] B. Metzger,et al. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.
[24] J. K. Blackburn,et al. A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.
[25] J. P. López-Zaragoza,et al. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.
[26] A. Sesana. Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.
[27] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[28] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[29] C. Moore,et al. Gravitational-wave sensitivity curves , 2014, 1408.0740.
[30] W. J. Weber,et al. The Gravitational Universe , 2013, 1305.5720.
[31] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[32] Michele Vallisneri,et al. A LISA data-analysis primer , 2008, 0812.0751.
[33] Report on the second Mock LISA Data Challenge , 2007, 0711.2667.
[34] Stanislav Babak,et al. An Overview of the Mock LISA Data Challenges , 2006 .
[35] M. Vallisneri. Geometric time delay interferometry , 2005, gr-qc/0504145.
[36] Robert Eliot Spero,et al. Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.
[37] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[38] William M. Folkner,et al. LISA orbit selection and stability , 1997 .