The numerical greatest common divisor of univariate polynomials

This paper presents a regularization theory for numerical computation of polynomial greatest common divisors and a convergence analysis, along with a detailed description of a blackbox-type algorithm. The root of the ill-posedness in conventional GCD computation is identified by its geometry where polynomials form differentiable manifolds entangled in a stratification structure. With a proper regularization, the numerical GCD is proved to be strongly well-posed. Most importantly, the numerical GCD solves the problem of finding the GCD accurately using floating point arithmetic even if the data are perturbed. A sensitivity measurement, error bounds at each computing stage, and the overall convergence are established rigorously. The computing results of selected test examples show that the algorithm and software appear to be robust and accurate.

[1]  Zhonggang Zeng,et al.  A Rank-Revealing Method with Updating, Downdating, and Applications , 2005, SIAM J. Matrix Anal. Appl..

[2]  Zhonggang Zeng Algorithm 835: MultRoot---a Matlab package for computing polynomial roots and multiplicities , 2004, TOMS.

[3]  Zhonggang Zeng,et al.  A numerical method for computing the Jordan Canonical Form , 2021, ArXiv.

[4]  Ján Eliaš Approximate Polynomial Greatest Common Divisor , 2012 .

[5]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[6]  Zhonggang Zeng,et al.  A Rank-Revealing Method with Updating, Downdating, and Applications. Part II , 2009, SIAM J. Matrix Anal. Appl..

[7]  Arnold Schönhage,et al.  Quasi-GCD computations , 1985, J. Complex..

[8]  Robert M. Corless,et al.  Optimization strategies for the approximate GCD problem , 1998, ISSAC '98.

[9]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[10]  Thomas W. Sederberg,et al.  Best linear common divisors for approximate degree reduction , 1993, Comput. Aided Des..

[11]  E. Kaltofen,et al.  Structured Low Rank Approximation of a Sylvester Matrix , 2007 .

[12]  Olivier COMPANY,et al.  Les robots parallèles , 2015, Robotique.

[13]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[14]  George Labahn,et al.  THE SNAP PACKAGE FOR ARITHMETIC WITH NUMERIC POLYNOMIALS , 2002 .

[15]  STRUCTURED LOW RANK APPROXIMATIONS OF THE SYLVESTER RESULTANT MATRIX FOR APPROXIMATE GCDS OF BERNSTEIN BASIS POLYNOMIALS , 2009 .

[16]  George Labahn,et al.  A Fast and Numerically Stable Euclidean-Like Algorithm for Detecting Relatively Prime Numerical Polynomials , 1998, J. Symb. Comput..

[17]  Zhonggang Zeng,et al.  The approximate GCD of inexact polynomials , 2004, ISSAC '04.

[18]  Erich Kaltofen,et al.  Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials , 2006, ISSAC '06.

[19]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[20]  Zhonggang Zeng,et al.  The approximate GCD of inexact polynomials Part II: a multivariate algorithm , 2004, ISSAC 2004.

[21]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[22]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[23]  Petre Stoica,et al.  Common factor detection and estimation , 1997, Autom..

[24]  Zhonggang Zeng The approximate irreducible factorization of a univariate polynomial: revisited , 2009, ISSAC '09.

[25]  V. Pan Numerical Computation of a Polynomial GCD and Extensions , 1996 .

[26]  H. T. Kung,et al.  Systolic VLSI Arrays for Polynomial GCD Computation , 1984, IEEE Transactions on Computers.

[27]  Joseph L. Taylor Several Complex Variables with Connections to Algebraic Geometry and Lie Groups , 2002 .

[28]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[29]  David Rupprecht An algorithm for computing certified approximate GCD of n univariate polynomials , 1999 .

[30]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[31]  Zhonggang Zeng Regularization and Matrix Computation in Numerical Polynomial Algebra , 2009 .

[32]  Matu-Tarow Noda,et al.  Approximate GCD and its application to ill-conditioned algebraic equations , 1991 .

[33]  Zhonggang Zeng Computing multiple roots of inexact polynomials , 2005, Math. Comput..

[34]  I. Emiris,et al.  Certified approximate univariate GCDs , 1997 .

[35]  Stephen M. Watt,et al.  QR factoring to compute the GCD of univariate approximate polynomials , 2004, IEEE Transactions on Signal Processing.

[36]  Marilena Mitrouli,et al.  Numerical Computation of the Least Common Multiple of a Set of Polynomials , 2000, Reliab. Comput..

[37]  Jan Verschelde,et al.  Computing dynamic output feedback laws , 2004, IEEE Transactions on Automatic Control.

[38]  S. Barnett Polynomials and linear control systems , 1983 .

[39]  Donna K. Dunaway Calculation of Zeros of a Real Polynomial Through Factorization Using Euclid’s Algorithm , 1974 .

[40]  J. Winkler,et al.  Structured total least norm and approximate GCDs of inexact polynomials , 2008 .

[41]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[42]  Narendra Karmarkar,et al.  Approximate polynomial greatest common divisors and nearest singular polynomials , 1996, ISSAC '96.

[43]  Hans J. Stetter,et al.  Detection and Validation of Clusters of Polynomial Zeros , 1997, J. Symb. Comput..

[44]  Michael Sebek,et al.  Reliable numerical methods for polynomial matrix triangularization , 1999, IEEE Trans. Autom. Control..

[45]  Stephen M. Watt,et al.  The singular value decomposition for polynomial systems , 1995, ISSAC '95.