0.94–2.42 μm GROUND-BASED TRANSMISSION SPECTRA OF THE HOT JUPITER HD-189733b

We present here new transmission spectra of the hot Jupiter HD-189733b using the SpeX instrument on the NASA Infrared Telescope Facility. We obtained two nights of observations where we recorded the primary transit of the planet in the J, H, and K bands simultaneously, covering a spectral range from 0.94 to 2.42 μm. We used Fourier analysis and other detrending techniques validated previously on other data sets to clean the data. We tested the statistical significance of our results by calculating the autocorrelation function, and we found that, after the detrending, autocorrelative noise is diminished at most frequencies. Additionally, we repeated our analysis on the out-of-transit data only, showing that the residual telluric contamination is well within the error bars. While these techniques are very efficient when multiple nights of observations are combined together, our results prove that even one good night of observations is enough to provide statistically meaningful data. Our observed spectra are consistent with space-based data recorded in the same wavelength interval by multiple instruments, indicating that ground-based facilities are becoming a viable and complementary option to spaceborne observatories. The best fit to the features in our data was obtained with water vapor. Our error bars aremore » not small enough to address the presence of additional molecules; however, by combining the information contained in other data sets with our results, it is possible to explain all the available observations with a modeled atmospheric spectrum containing water vapor, methane, carbon monoxide, and hazes/clouds.« less

[1]  F. Bouchy,et al.  An Earth-mass planet orbiting α Centauri B , 2012, Nature.

[2]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[3]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[4]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[5]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[6]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[7]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[8]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[9]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[10]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[11]  J. Beaulieu,et al.  Exploring extrasolar worlds: from gas giants to terrestrial habitable planets. , 2010, Faraday discussions.

[12]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[13]  J. D'esert,et al.  Temperature–pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating , 2012, 1202.4721.

[14]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[15]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[16]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[17]  Geronimo L. Villanueva,et al.  NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b , 2010, 1011.5507.

[18]  Nicolas Crouzet,et al.  TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS , 2012, 1210.5275.

[19]  D. Ehrenreich,et al.  Infrared Transmission Spectra for Extrasolar Giant Planets , 2006, astro-ph/0611174.

[20]  M. R. Haas,et al.  A sub-Mercury-sized exoplanet , 2013, Nature.

[21]  J. Tennyson,et al.  Water in exoplanets , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[23]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[24]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[25]  Jonathan Tennyson,et al.  BLIND EXTRACTION OF AN EXOPLANETARY SPECTRUM THROUGH INDEPENDENT COMPONENT ANALYSIS , 2013, 1301.4041.

[26]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[27]  T. Barman On the Presence of Water and Global Circulation in the Transiting Planet HD 189733b , 2008, 0802.0854.

[28]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[29]  D. Ehrenreich,et al.  Transit spectrophotometry of the exoplanet HD 189733b - II. New Spitzer observations at 3.6 μm , 2010, 1008.2481.

[30]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[31]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[32]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[33]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[34]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[35]  Marcell Tessenyi,et al.  Probing the extreme planetary atmosphere of WASP-12b , 2012, 1205.4736.

[36]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[37]  Philip C. Gregory,et al.  Bayesian exoplanet tests of a new method for MCMC sampling in highly correlated model parameter spaces , 2011 .

[38]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[39]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[40]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[41]  Antonino Francesco Lanza,et al.  Multiwavelength flux variations induced by stellar magnetic activity: effects on planetary transits , 2012, 1201.3514.

[42]  I. P. Waldmann,et al.  GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B , 2011, 1104.0570.

[43]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[44]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[45]  Ingo P. Waldmann,et al.  OF “COCKTAIL PARTIES” AND EXOPLANETS , 2011, 1106.1989.

[46]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[47]  Simon Albrecht,et al.  Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b , 2013, 1304.4014.

[48]  M. R. Line,et al.  INFORMATION CONTENT OF EXOPLANETARY TRANSIT SPECTRA: AN INITIAL LOOK , 2011, 1111.2612.

[49]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[50]  Patrick G. J. Irwin,et al.  Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy , 2011, 1110.2934.

[51]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[52]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[53]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.