Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis.

We show that MALDI mass spectrometry, suitable for mixtures, is an indispensable tool in probing the mechanism of nanocluster synthesis enabling positive identification of nanoclusters. The size evolution of the mixture of larger clusters (Au(102), Au(68), Au(38)) to form highly monodisperse Au(25) nanoclusters is demonstrated and probably includes the participation of Au(I) thiolate. The size evolution via structural reconstruction of the larger cores such as 38, approximately 44, 68, and 102 to a Au(25) nanocluster has been discussed.

[1]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[2]  P. Liljeroth,et al.  Quantised charging of monolayer-protected nanoparticles. , 2008, Chemical Society reviews.

[3]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[4]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[5]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[6]  M. L. Tiago,et al.  The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. , 2008, Journal of the American Chemical Society.

[7]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[8]  A. Gerdon,et al.  Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters. , 2007, Journal of the American Chemical Society.

[9]  R. Murray,et al.  Synthesis and isolation of the molecule-like cluster Au 38(PhCH2CH2S)24 ( Langmuir (2004) 20 (1945-1952)) , 2008 .

[10]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[11]  R. Murray,et al.  Heterophase ligand exchange and metal transfer between monolayer protected clusters. , 2003, Journal of the American Chemical Society.

[12]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[13]  X. Zeng,et al.  Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. , 2008, Journal of the American Chemical Society.

[14]  R. Whetten,et al.  Raman spectroscopy of benzenethiolates on nanometer-scale gold clusters. , 2006, The journal of physical chemistry. B.

[15]  Zhikun Wu,et al.  One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters , 2009 .

[16]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[17]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[18]  Royce W Murray,et al.  Quantized double-layer charging of highly monodisperse metal nanoparticles. , 2002, Journal of the American Chemical Society.

[19]  R. Jin,et al.  Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. , 2009, The journal of physical chemistry. A.

[20]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[21]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[22]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[23]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[24]  A. Dass Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. , 2009, Journal of the American Chemical Society.

[25]  T. G. Schaaff Laser desorption and matrix-assisted laser desorption/ionization mass spectrometry of 29-kDa Au:SR cluster compounds. , 2004, Analytical chemistry.

[26]  L. F. Dahl,et al.  Crystallographically proven nanometer-sized gold thiolate cluster Au102(SR)44: its unexpected molecular anatomy and resulting stereochemical and bonding consequences. , 2008, Small.

[27]  R. Whetten,et al.  All-aromatic, nanometer-scale, gold-cluster thiolate complexes. , 2005, Journal of the American Chemical Society.

[28]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[29]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[30]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[31]  Robert L. Whetten,et al.  Controlled Etching of Au:SR Cluster Compounds , 1999 .

[32]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[33]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[34]  R. Murray,et al.  Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. , 2007, Journal of the American Chemical Society.