Segmentation of images with separating layers by fuzzy c-means and convex optimization

This paper is concerned with the segmentation of two- and three-dimensional images containing separated layers. We tackle this problem by combining the fuzzy c-means algorithm with recently developed convex multi-class segmentation algorithms, where we modify the data term of the corresponding functional to involve the information of the layer structure. We solve the optimization problem numerically by applying an alternating direction method of multipliers in conjunction with the fast discrete cosine transform to solve the involved linear system of equations. We demonstrate the performance of our method on synthetic and real-world images. In particular we deal with the segmentation of three-dimensional images arising from micro-computed tomography of C/SiC-ceramics by synchrotron radiation.

[1]  Dessa D. Overstreet,et al.  Generalized Fuzzy c-Means Clustering , 1998 .

[2]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[3]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jan-Michael Frahm,et al.  Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps , 2008, VMV.

[5]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[6]  Gabriele Steidl,et al.  Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems , 1998 .

[7]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[8]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[9]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[10]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[11]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[12]  Gabriele Steidl,et al.  A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data , 2012, Pattern Recognit..

[13]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[14]  Gabriele Steidl,et al.  On Cyclic Gradient Descent Reprojection , 2011 .

[15]  Yuri Boykov,et al.  Globally optimal segmentation of multi-region objects , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[16]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[17]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[18]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[19]  Paul R. Kersten,et al.  Fuzzy order statistics and their application to fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..

[20]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[21]  Christoph Schnörr,et al.  Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision , 2010, ECCV.

[22]  Jing Yuan,et al.  Convex Multi-class Image Labeling by Simplex-Constrained Total Variation , 2009, SSVM.

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[25]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[26]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Xue-Cheng Tai,et al.  A Continuous Max-Flow Approach to Potts Model , 2010, ECCV.

[28]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[29]  Xue-Cheng Tai,et al.  Graph Cut Optimization for the Piecewise Constant Level Set Method Applied to Multiphase Image Segmentation , 2009, SSVM.

[30]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[31]  Hugues Talbot,et al.  A Spatial Regularization Approach for Vector Quantization , 2010, Journal of Mathematical Imaging and Vision.

[32]  Gabriele Steidl,et al.  On vector and matrix median computation , 2012, J. Comput. Appl. Math..

[33]  J. Bezdek,et al.  Recent convergence results for the fuzzy c-means clustering algorithms , 1988 .

[34]  Christoph Schnörr,et al.  Continuous Multiclass Labeling Approaches and Algorithms , 2011, SIAM J. Imaging Sci..

[35]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[36]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[37]  S. Zabler,et al.  High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II) , 2008 .

[38]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[40]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.