Robust moving object detection under complex background

We present a novel method to robustly and efficiently detect moving object, even under the complexity background, such as illumination changes, long shadows etc. This work is distinguished by three key contributions. The first is the integration of the Local Binary Pattern texture measure which extends the moving object detection work for light illumination changing. The second is the introduction of HSI color space measure which removes shadows for the background subtraction. The third contribution is a novel fuzzy way using the Choquet integral which improves detection accuracy. The experiment results using several dataset videos show the robustness and effectiveness of the proposed method.

[1]  Oncel Tuzel,et al.  Bayesian background modeling for foreground detection , 2005, VSSN@MM.

[2]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[3]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[5]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[6]  Dima Damen,et al.  Detecting Carried Objects in Short Video Sequences , 2008, ECCV.

[7]  Michio Sugeno,et al.  A new approach to time series modeling with fuzzy measures and the Choquet integral , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[8]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Yasuo Narukawa,et al.  Decision Modelling Using the Choquet Integral , 2004, MDAI.

[10]  M.M. Trivedi,et al.  Vision modules for a multi-sensory bridge monitoring approach , 2004, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749).

[11]  Hong Huo,et al.  Traffic Video Segmentation Using Adaptive-K Gaussian Mixture Model , 2006, IWICPAS.

[12]  Monica N. Nicolescu,et al.  Improving target detection by coupling it with tracking , 2009, Machine Vision and Applications.

[13]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[14]  Hongxun zhang,et al.  Fusing Color and Texture Features for Background Model , 2006, FSKD.

[15]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[16]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[17]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Vasile Gui,et al.  A fast algorithm for background tracking in video surveillance, using nonparametric kernel density estimation , 2005 .

[19]  Mohan M. Trivedi,et al.  "Hybrid Cone-Cylinder" Codebook Model for Foreground Detection with Shadow and Highlight Suppression , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[20]  Alexandre R. J. François,et al.  Adaptive Color Background Modeling for Real-Time Segmentation of Video Streams* , 1999 .

[21]  Mark E Hallenbeck,et al.  Extracting Roadway Background Image , 2006 .

[22]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Riad I. Hammoud,et al.  Robust Multi-Pedestrian Tracking in Thermal-Visible Surveillance Videos , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[24]  Thierry Bouwmans,et al.  Fuzzy foreground detection for infrared videos , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[25]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[27]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[28]  Nizar Bouguila,et al.  A Robust Video Foreground Segmentation by Using Generalized Gaussian Mixture Modeling , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[29]  James M. Keller,et al.  Information fusion in computer vision using the fuzzy integral , 1990, IEEE Trans. Syst. Man Cybern..

[30]  Marko Heikkilä,et al.  A Texture-based Method for Detecting Moving Objects , 2004, BMVC.

[31]  Adilson Gonzaga,et al.  Hand Image Segmentation in Video Sequence by GMM: a comparative analysis , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.