Modeling Tensile, Compressive, and Cyclic Response of Inconel 718 Using a Crystal Plasticity Model Incorporating the Effects of Precipitates

[1]  I. Beyerlein,et al.  Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling , 2017 .

[2]  I. Beyerlein,et al.  A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718 , 2017 .

[3]  B. McWilliams,et al.  Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: Influence on strain hardening and texture evolution , 2017 .

[4]  I. Beyerlein,et al.  Coupling elasto-plastic self-consistent crystal plasticity and implicit finite elements: Applications to compression, cyclic tension-compression, and bending to large strains , 2017 .

[5]  M. Knezevic,et al.  Modeling of Sheet Metal Forming Based on Implicit Embedding of the Elasto-Plastic Self-Consistent Formulation in Shell Elements: Application to Cup Drawing of AA6022-T4 , 2017 .

[6]  M. Knezevic,et al.  Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718 , 2016 .

[7]  I. Beyerlein,et al.  A numerical procedure enabling accurate descriptions of strain rate-sensitive flow of polycrystals within crystal visco-plasticity theory , 2016 .

[8]  I. Beyerlein,et al.  Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy , 2016 .

[9]  M. Wan,et al.  Interaction of forming temperature and grain size effect in micro/meso-scale plastic deformation of nickel-base superalloy , 2016 .

[10]  Ryan B. Wicker,et al.  Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology , 2016 .

[11]  M. Knezevic,et al.  Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718 , 2016 .

[12]  Liu Chenxi,et al.  Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy , 2015 .

[13]  I. Beyerlein,et al.  A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model , 2015 .

[14]  M. Knezevic,et al.  A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: Application to AA6022-T4 , 2015 .

[15]  I. Beyerlein,et al.  An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals , 2015 .

[16]  I. Beyerlein,et al.  Enhancement of orientation gradients during simple shear deformation by application of simple compression , 2015 .

[17]  I. Beyerlein,et al.  Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr , 2015 .

[18]  S. Antolovich Microstructural aspects of fatigue in Ni-base superalloys , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Christoph Fahrenson,et al.  Effect of age hardening on the deformation behavior of an Mg–Y–Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling , 2015 .

[20]  I. Beyerlein,et al.  In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg–Li–(Al) alloys: An uncommon tension–compression asymmetry , 2015 .

[21]  Edward D. Herderick,et al.  Progress in Additive Manufacturing , 2015 .

[22]  I. Beyerlein,et al.  A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites , 2014 .

[23]  R. Mccabe,et al.  Deformation behavior of the cobalt-based superalloy Haynes 25: Experimental characterization and crystal plasticity modeling , 2014 .

[24]  K. Maciejewski,et al.  Dislocation/precipitate interactions in IN100 at 650 °C , 2013 .

[25]  I. Beyerlein,et al.  A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium , 2013 .

[26]  F. Barlat,et al.  A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels , 2013 .

[27]  Laurent Capolungo,et al.  Anisotropic stress–strain response and microstructure evolution of textured α-uranium , 2012 .

[28]  M. Dehmas,et al.  TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy , 2011 .

[29]  Surya R. Kalidindi,et al.  Deformation twinning in AZ31: Influence on strain hardening and texture evolution , 2010 .

[30]  Tresa M. Pollock,et al.  Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys , 2009 .

[31]  L. Murr,et al.  Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. , 2009, Journal of the mechanical behavior of biomedical materials.

[32]  Sabita Ghosh,et al.  Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique , 2008 .

[33]  Carlos N. Tomé,et al.  A dislocation-based constitutive law for pure Zr including temperature effects , 2008 .

[34]  K. Osakada,et al.  Rapid Manufacturing of Metal Components by Laser Forming , 2006 .

[35]  M. Chaturvedi,et al.  Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation , 2005 .

[36]  J. Du,et al.  THE EFFECT OF NB, TI, AL ON PRECIPITATION AND STRENGTHENING BEHAVIOR OF 718 TYPE SUPERALLOYS , 2005 .

[37]  X. Feaugas,et al.  The effects of grain size on the cyclic deformation behaviour of polycrystalline nickel , 2004 .

[38]  Changzheng Wang,et al.  Effect of double aging treatment on structure in Inconel 718 alloy , 2004 .

[39]  D Rodney,et al.  The Role of Collinear Interaction in Dislocation-Induced Hardening , 2003, Science.

[40]  G. Appa Rao,et al.  Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718 , 2003 .

[41]  M. Abdellaoui,et al.  Structural characterization of the aged Inconel 718 , 2000 .

[42]  B. Fedelich,et al.  Modelling the orientation and direction dependence of the critical resolved shear stress of nickel-base superalloy single crystals , 2000 .

[43]  C. Davis,et al.  Modeling solid solution strengthening in nickel alloys , 1997 .

[44]  P. A. Turner,et al.  A study of residual stresses in Zircaloy-2 with rod texture , 1994 .

[45]  R. Field,et al.  The Effects of Long Time Exposure on Alloy 718 , 1994 .

[46]  T. J. Hicks,et al.  The structure and paramagnetism of Ni3Nb , 1992 .

[47]  F. Leckie,et al.  Inhomogeneous deformation in INCONEL 718 during monotonic and cyclic loadings , 1990 .

[48]  V. Vítek,et al.  The asymmetry of the flow stress in Ni3(Al,Ta) single crystals , 1984 .

[49]  A. Deruyttere,et al.  Multi-component solid solution hardening , 1977 .

[50]  D. S. Duvall,et al.  PRECIPITATION IN NICKEL-BASE ALLOY 718. , 1969 .

[51]  H. Gleiter,et al.  Precipitation hardening by coherent particles , 1968 .