When video search goes wrong: predicting query failure using search engine logs and visual search results
暂无分享,去创建一个
Tao Mei | Martha Larson | Shipeng Li | Alan Hanjalic | Linjun Yang | Christoph Kofler | Tao Mei | Shipeng Li | A. Hanjalic | M. Larson | Linjun Yang | Christoph Kofler
[1] Alan Hanjalic,et al. Supervised reranking for web image search , 2010, ACM Multimedia.
[2] Arjen P. de Vries,et al. Towards an automated query modification assistant , 2011, ArXiv.
[3] Efthimis N. Efthimiadis,et al. Analyzing and evaluating query reformulation strategies in web search logs , 2009, CIKM.
[4] Amanda Spink,et al. A study and comparison of multimedia Web searching: 1997-2006 , 2009, J. Assoc. Inf. Sci. Technol..
[5] Amanda Spink,et al. The Effect of Specialized Multimedia Collections on Web Searching , 2004, J. Web Eng..
[6] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[7] Hsiao-Tieh Pu,et al. An analysis of failed queries for web image retrieval , 2008, J. Inf. Sci..
[8] Ryen W. White,et al. Predicting short-term interests using activity-based search context , 2010, CIKM.
[9] Iadh Ounis,et al. Inferring Query Performance Using Pre-retrieval Predictors , 2004, SPIRE.
[10] Marcel Worring,et al. Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..
[11] Bernard J. Jansen,et al. Search log analysis: What it is, what's been done, how to do it , 2006 .
[12] Ryen W. White,et al. Predicting query performance using query, result, and user interaction features , 2010, RIAO.
[13] Ryen W. White,et al. Modeling and analysis of cross-session search tasks , 2011, SIGIR.
[14] Ryen W. White,et al. Why searchers switch: understanding and predicting engine switching rationales , 2011, SIGIR.
[15] Stevan Rudinac,et al. Exploiting noisy visual concept detection to improve spoken content based video retrieval , 2010, ACM Multimedia.
[16] Steve Fox,et al. Evaluating implicit measures to improve web search , 2005, TOIS.
[17] Eli Shechtman,et al. Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[18] Meng Wang,et al. Visual query suggestion , 2010, ACM Trans. Multim. Comput. Commun. Appl..
[19] Martha Larson,et al. To Seek, Perchance to Fail: Expressions of User Needs in Internet Video Search , 2011, ECIR.
[20] Shih-Fu Chang,et al. Reranking Methods for Visual Search , 2007, IEEE MultiMedia.
[21] Aditi Sharan,et al. Co-occurrence based predictors for estimating query difficulty , 2010, 2010 IEEE International Conference on Data Mining Workshops.
[22] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[23] Mathias Lux,et al. Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.
[24] Ximena Olivares,et al. Visual diversification of image search results , 2009, WWW '09.
[25] Sarantos Kapidakis,et al. Failed Queries: a Morpho-Syntactic Analysis Based on Transaction Log Files , 2011 .
[26] Amanda Spink,et al. Patterns of query reformulation during Web searching , 2009, J. Assoc. Inf. Sci. Technol..
[27] Daniel E. Rose,et al. Understanding user goals in web search , 2004, WWW '04.
[28] W. Bruce Croft,et al. Predicting query performance , 2002, SIGIR '02.
[29] Andrew Zisserman,et al. Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[30] Falk Scholer,et al. Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evidence , 2008, ECIR.
[31] Ahmet Can,et al. Characterizing Queries in Different Search Tasks , 2012, 2012 45th Hawaii International Conference on System Sciences.
[32] Enhong Chen,et al. Context-aware ranking in web search , 2010, SIGIR '10.