A Fourier-LDA approach for image recognition

Fourier transform and linear discrimination analysis (LDA) are two commonly used techniques of image processing and recognition. Based on them, we propose a Fourier-LDA approach (FLA) for image recognition. It selects appropriate Fourier frequency bands with favorable linear separability by using a two-dimensional separability judgment. Then it extracts two-dimensional linear discriminative features to perform the classification. Our experimental results on different image data prove that FLA obtains better classification performance than other linear discrimination methods.