De novo design: balancing novelty and confined chemical space

Importance of the field: De novo drug design serves as a tool for the discovery of new ligands for macromolecular targets as well as optimization of known ligands. Recently developed tools aim to address the multi-objective nature of drug design in an unprecedented manner. Areas covered in this review: This article discusses recent advances in de novo drug design programs and accessory programs used to evaluate compounds post-generation. What the reader will gain: The reader is introduced to the challenges inherent in de novo drug design and will become familiar with current trends in de novo design. Furthermore, the reader will be better prepared to assess the value of a tool, and be equipped to design more elegant tools in the future. Take home message: De novo drug design can assist in the efficient discovery of new compounds with a high affinity for a given target. The inclusion of existing chemoinformatic methods with current structure-based de novo design tools provides a means of enhancing the therapeutic value of these generated compounds.

[1]  Johann Gasteiger,et al.  Structure and reaction based evaluation of synthetic accessibility , 2007, J. Comput. Aided Mol. Des..

[2]  Canhui Zheng,et al.  Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14alpha-demethylase (CYP51) of fungi. , 2006, Bioorganic & medicinal chemistry letters.

[3]  Rebecca Wirfs-Brock,et al.  Design Strategy , 2008, IEEE Software.

[4]  George W. A. Milne,et al.  An Integrated in Silico Analysis of Drug-Binding to Human Serum Albumin , 2006, J. Chem. Inf. Model..

[5]  Julian Tirado-Rives,et al.  Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[6]  William L. Jorgensen,et al.  Computer-assisted synthetic analysis. Generation of synthetic sequences involving sequential functional group interchanges , 1976 .

[7]  Philip M. Dean,et al.  Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design , 1997, J. Comput. Aided Mol. Des..

[8]  Konstantin V. Balakin,et al.  Property-Based Design of GPCR-Targeted Library , 2002, J. Chem. Inf. Comput. Sci..

[9]  Ola Engkvist,et al.  Prediction of CNS Activity of Compound Libraries Using Substructure Analysis , 2003, J. Chem. Inf. Comput. Sci..

[10]  Julien Michel,et al.  Prediction of the water content in protein binding sites. , 2009, The journal of physical chemistry. B.

[11]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[12]  Collin M. Stultz,et al.  Dynamic ligand design and combinatorial optimization: Designing inhibitors to endothiapepsin , 2000, Proteins.

[13]  Britta Nisius,et al.  Fragment Shuffling: An Automated Workflow for Three-Dimensional Fragment-Based Ligand Design , 2009, J. Chem. Inf. Model..

[14]  Françoise Van Bambeke,et al.  Structure-Based Design of Benzoxazoles as new Inhibitors for D-Alanyl - D-Alanine Ligase , 2009 .

[15]  Cayley LVII. On the mathematical theory of isomers , 1874 .

[16]  Luhua Lai,et al.  Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach. , 2009, Journal of medicinal chemistry.

[17]  Valerie J. Gillet,et al.  SPROUT: A program for structure generation , 1993, J. Comput. Aided Mol. Des..

[18]  Andrew Stamford,et al.  Piperazine sulfonamide BACE1 inhibitors: design, synthesis, and in vivo characterization. , 2010, Bioorganic & medicinal chemistry letters.

[19]  Daniel R. Caffrey,et al.  Structure-based maximal affinity model predicts small-molecule druggability , 2007, Nature Biotechnology.

[20]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[21]  Haiyan Liu,et al.  Structure-based ligand design for flexible proteins: Application of new F-DycoBlock , 2001, J. Comput. Aided Mol. Des..

[22]  G. A. Petersson,et al.  General methods of synthetic analysis. Strategic bond disconnections for bridged polycyclic structures , 1975 .

[23]  Andreas Schwienhorst,et al.  Genetic algorithm for the design of molecules with desired properties , 2002, J. Comput. Aided Mol. Des..

[24]  D K Gehlhaar,et al.  De novo design of enzyme inhibitors by Monte Carlo ligand generation. , 1995, Journal of medicinal chemistry.

[25]  Woody Sherman,et al.  Computational approaches for fragment-based and de novo design. , 2010, Current topics in medicinal chemistry.

[26]  M. Hutter,et al.  In silico prediction of drug properties. , 2009, Current medicinal chemistry.

[27]  Hongyu Zhao,et al.  Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. , 2007, Drug discovery today.

[28]  M. Stahl,et al.  Scaffold hopping. , 2004, Drug discovery today. Technologies.

[29]  G. Schneider,et al.  Voyages to the (un)known: adaptive design of bioactive compounds. , 2009, Trends in biotechnology.

[30]  Eric-Wubbo Lameijer,et al.  Designing active template molecules by combining computational de novo design and human chemist's expertise. , 2007, Journal of medicinal chemistry.

[31]  Konstantin V. Balakin,et al.  Structure-Based versus Property-Based Approaches in the Design of G-Protein-Coupled Receptor-Targeted Libraries , 2003, J. Chem. Inf. Comput. Sci..

[32]  E. Shakhnovich,et al.  SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates. 1. Methodology and Supporting Evidence , 1996 .

[33]  N. P. Todorov,et al.  SkelGen: a general tool for structure-based de novo ligand design , 2006, Expert opinion on drug discovery.

[34]  Tudor I. Oprea,et al.  Chemoinformatics in drug discovery , 2005 .

[35]  Ian A. Watson,et al.  Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches. , 2009, Journal of medicinal chemistry.

[36]  Robert Abel,et al.  Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding , 2007, Proceedings of the National Academy of Sciences.

[37]  Jian Wang,et al.  A new synthesis of lysergic acid. , 2004, Organic letters.

[38]  Matthias Rarey,et al.  LoFT: Similarity-Driven Multiobjective Focused Library Design , 2010, J. Chem. Inf. Model..

[39]  Amedeo Caflisch,et al.  Fragment-Based de Novo Ligand Design by Multiobjective Evolutionary Optimization , 2008, J. Chem. Inf. Model..

[40]  Hwangseo Park,et al.  Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. , 2009, Bioorganic & medicinal chemistry letters.

[41]  E. Shakhnovich,et al.  SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. , 2002, Journal of medicinal chemistry.

[42]  Stuart L. Schreiber,et al.  Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4 , 2007, J. Comput. Aided Mol. Des..

[43]  Li Xing,et al.  Evaluation and application of multiple scoring functions for a virtual screening experiment , 2004, J. Comput. Aided Mol. Des..

[44]  Hans-Joachim Böhm,et al.  Towards the automatic design of synthetically accessible protein ligands: Peptides, amides and peptidomimetics , 1996, J. Comput. Aided Mol. Des..

[45]  Valerie J. Gillet,et al.  Knowledge-Based Approach to de Novo Design Using Reaction Vectors , 2009, J. Chem. Inf. Model..

[46]  Dimitrios Vlachakis,et al.  Discovery of a novel HCV helicase inhibitor by a de novo drug design approach. , 2008, Bioorganic & medicinal chemistry letters.

[47]  Alasdair T. R. Laurie,et al.  Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. , 2006, Current protein & peptide science.

[48]  Thomas Bäck,et al.  The Molecule Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules , 2006, J. Chem. Inf. Model..

[49]  Gisbert Schneider,et al.  Collection of bioactive reference compounds for focused library design , 2003 .

[50]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[51]  Wolfgang Guba,et al.  Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity. , 2008, Journal of medicinal chemistry.

[52]  Diana C. Roe,et al.  BUILDER v.2: Improving the chemistry of a de novo design strategy , 1995, J. Comput. Aided Mol. Des..

[53]  Michael C. Hutter,et al.  Gradual in Silico Filtering for Druglike Substances , 2008, J. Chem. Inf. Model..

[54]  Vithal M. Kulkarni,et al.  Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine , 2009, Medicinal Chemistry Research.

[55]  H. Böhm,et al.  A novel computational tool for automated structure‐based drug design , 1993, Journal of molecular recognition : JMR.

[56]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[57]  Jens Sadowski,et al.  "In-House Likeness": Comparison of Large Compound Collections Using Artificial Neural Networks , 2005, J. Chem. Inf. Model..

[58]  W. Sherman,et al.  Understanding Kinase Selectivity Through Energetic Analysis of Binding Site Waters , 2010, ChemMedChem.

[59]  Colin W. G. Fishwick,et al.  Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase , 2008 .

[60]  Richard A. Lewis Automated site-directed drug design: Approaches to the formation of 3D molecular graphs , 1990, J. Comput. Aided Mol. Des..

[61]  B. Berne,et al.  Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. , 2008, Journal of the American Chemical Society.

[62]  Hongwei Huang,et al.  E-Novo: An Automated Workflow for Efficient Structure-Based Lead Optimization , 2009, J. Chem. Inf. Model..

[63]  Holger Claussen,et al.  Second-generation de novo design: a view from a medicinal chemist perspective , 2009, J. Comput. Aided Mol. Des..

[64]  A. P. Sergeyko,et al.  Rational design of macrolides by virtual screening of combinatorial libraries generated through in silico manipulation of polyketide synthases. , 2006, Journal of medicinal chemistry.

[65]  Per Källblad,et al.  Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. , 2006, Journal of medicinal chemistry.

[66]  W. Howe,et al.  Computer design of bioactive molecules: A method for receptor‐based de novo ligand design , 1991, Proteins.

[67]  Jean-Louis Reymond,et al.  Virtual exploration of the small-molecule chemical universe below 160 Daltons. , 2005, Angewandte Chemie.

[68]  T. Poulos,et al.  Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. , 2008, Journal of the American Chemical Society.

[69]  Chris M. W. Ho In Silico Lead Optimization , 2005 .

[70]  René Barone,et al.  Computer‐Assisted Synthesis Design (CASD) , 2008 .

[71]  Constantinos S. Pattichis,et al.  De Novo Drug Design Using Multiobjective Evolutionary Graphs , 2009, J. Chem. Inf. Model..

[72]  Thomas Bäck,et al.  Evolutionary Algorithms in Drug Design , 2005, Natural Computing.

[73]  Johann Gasteiger,et al.  A Graph-Based Genetic Algorithm and Its Application to the Multiobjective Evolution of Median Molecules , 2004, J. Chem. Inf. Model..

[74]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[75]  M. Karplus,et al.  Functionality maps of binding sites: A multiple copy simultaneous search method , 1991, Proteins.

[76]  R. Brereton,et al.  Handbook of chemoinformatics: from data to knowledge, edited by Johann Gasteiger, Volumes 1–4. Wiley‐VCH, Weinheim, 2003, ISBN 3527306803, €485 , 2004 .

[77]  D. J. Triggle,et al.  Comprehensive medicinal chemistry II , 2006 .

[78]  Kitsuchart Pasupa,et al.  Virtual Screening Using Binary Kernel Discrimination: Effect of Noisy Training Data and the Optimization of Performance , 2006, J. Chem. Inf. Model..

[79]  David Flaxbart Handbook of Chemoinformatics: From Data to Knowledge, Volumes 1−4 Edited by Johann Gasteiger (University of Erlangen-Nürnberg). Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. 2003. xlvii + 1870 pp. $750.00. ISBN 3-527-30680-3. , 2004 .

[80]  Alexander D. MacKerell,et al.  Binding Response: A Descriptor for Selecting Ligand Binding Site on Protein Surfaces , 2007, J. Chem. Inf. Model..

[81]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the mathematical theory of isomers , 2009 .

[82]  Alan C. Cheng,et al.  Structure-Based Identification of Small Molecule Binding Sites Using a Free Energy Model , 2006, J. Chem. Inf. Model..

[83]  Darren V. S. Green,et al.  Prediction of Biological Activity for High-Throughput Screening Using Binary Kernel Discrimination , 2001, J. Chem. Inf. Comput. Sci..

[84]  Eugene I Shakhnovich,et al.  Native atom types for knowledge-based potentials: application to binding energy prediction. , 2004, Journal of medicinal chemistry.

[85]  Michael J. Keiser,et al.  Predicting new molecular targets for known drugs , 2009, Nature.

[86]  Shibo Jiang,et al.  Structure-based design, synthesis and biological evaluation of new N-carboxyphenylpyrrole derivatives as HIV fusion inhibitors targeting gp41. , 2010, Bioorganic & medicinal chemistry letters.

[87]  Ricardo L. Mancera,et al.  Including Tightly-Bound Water Molecules in de Novo Drug Design. Exemplification through the in Silico Generation of Poly(ADP-ribose)polymerase Ligands , 2005, J. Chem. Inf. Model..

[88]  M. Hao,et al.  Structure-based design and subsequent optimization of 2-tolyl-(1,2,3-triazol-1-yl-4-carboxamide) inhibitors of p38 MAP kinase. , 2008, Bioorganic & medicinal chemistry letters.

[89]  Peter R Bernstein,et al.  De novo design of a picomolar nonbasic 5-HT(1B) receptor antagonist. , 2010, Journal of medicinal chemistry.

[90]  Gisbert Schneider,et al.  Flux (2): Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design , 2007, J. Chem. Inf. Model..

[91]  Michael C. Hutter Separating Drugs from Nondrugs: A Statistical Approach Using Atom Pair Distributions , 2007, J. Chem. Inf. Model..

[92]  M Karplus,et al.  An automated method for dynamic ligand design , 1995, Proteins.

[93]  D. Douguet Ligand-Based Approaches in Virtual Screening , 2008 .

[94]  Todd J. A. Ewing,et al.  DREAM++: Flexible docking program for virtual combinatorial libraries , 1999, J. Comput. Aided Mol. Des..

[95]  J C Baber,et al.  Predicting synthetic accessibility: application in drug discovery and development. , 2004, Mini reviews in medicinal chemistry.

[96]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[97]  Philip M. Dean,et al.  A validation study on the practical use of automated de novo design , 2002, J. Comput. Aided Mol. Des..

[98]  Jean-Louis Reymond,et al.  Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery , 2007, J. Chem. Inf. Model..

[99]  W. Guida,et al.  The art and practice of structure‐based drug design: A molecular modeling perspective , 1996, Medicinal research reviews.

[100]  Junmei Wang,et al.  Genetic Algorithm-Optimized QSPR Models for Bioavailability, Protein Binding, and Urinary Excretion , 2006, J. Chem. Inf. Model..

[101]  Tudor I. Oprea,et al.  Rapid Evaluation of Synthetic and Molecular Complexity for in Silico Chemistry , 2005, J. Chem. Inf. Model..

[102]  Nathan Brown,et al.  Molecular optimization using computational multi-objective methods. , 2007, Current opinion in drug discovery & development.

[103]  Matthew Clark,et al.  Grand Canonical Monte Carlo Simulation of Ligand-Protein Binding , 2006, J. Chem. Inf. Model..

[104]  Regine Bohacek,et al.  Multiple Highly Diverse Structures Complementary to Enzyme Binding Sites: Results of Extensive Application of a de Novo Design Method Incorporating Combinatorial Growth , 1994 .

[105]  Elizabeth A. Harker,et al.  In Silico Improvement of beta3-peptide inhibitors of p53 x hDM2 and p53 x hDMX. , 2009, Journal of the American Chemical Society.

[106]  Wei Huang,et al.  FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine)carboxylates. , 2006, Journal of medicinal chemistry.

[107]  C. Fishwick,et al.  A de novo designed inhibitor of D-Ala-D-Ala ligase from E. coli. , 2005, Angewandte Chemie.

[108]  Junmei Wang,et al.  Chapter 5 Recent Advances on in silico ADME Modeling , 2009 .

[109]  M. Sitzmann,et al.  Computer‐Assisted Synthesis Design by WODCA (CASD) , 2008 .

[110]  Rommie E. Amaro,et al.  AutoGrow: A Novel Algorithm for Protein Inhibitor Design , 2009, Chemical biology & drug design.

[111]  I. McLay,et al.  Design and x-ray crystal structures of high-potency nonsteroidal glucocorticoid agonists exploiting a novel binding site on the receptor , 2009, Proceedings of the National Academy of Sciences.

[112]  Ajay,et al.  Designing libraries with CNS activity. , 1999, Journal of medicinal chemistry.

[113]  Giuseppe Forlani,et al.  Design, synthesis, and activity of analogues of phosphinothricin as inhibitors of glutamine synthetase. , 2005, Journal of medicinal chemistry.

[114]  Harald Mauser,et al.  Chemical Fragment Spaces for de novo Design , 2007, J. Chem. Inf. Model..

[115]  Konstantin V. Balakin,et al.  Classification scheme for the design of serine protease targeted compound libraries , 2002, J. Comput. Aided Mol. Des..

[116]  A. Johnson,et al.  Molecular complexity analysis of de novo designed ligands. , 2006, Journal of medicinal chemistry.

[117]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[118]  J B Hendrickson A general protocol for systematic synthesis design. , 1976, Topics in current chemistry.

[119]  Matthew H Todd,et al.  Computer-aided organic synthesis. , 2005, Chemical Society reviews.

[120]  David Lou,et al.  FOG: Fragment Optimized Growth Algorithm for the de Novo Generation of Molecules Occupying Druglike Chemical Space , 2009, J. Chem. Inf. Model..

[121]  David E. Clark,et al.  Evolutionary Algorithms in Molecular Design , 1999 .

[122]  David C Lankin,et al.  Molecular modeling, synthesis, and activity studies of novel biaryl and fused-ring BACE1 inhibitors. , 2009, Bioorganic & medicinal chemistry letters.

[123]  Gisbert Schneider,et al.  Flux (1): A Virtual Synthesis Scheme for Fragment-Based de Novo Design , 2006, J. Chem. Inf. Model..

[124]  Woody Sherman,et al.  High‐energy water sites determine peptide binding affinity and specificity of PDZ domains , 2009, Protein science : a publication of the Protein Society.

[125]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[126]  Luhua Lai,et al.  RASSE: A New Method for Structure-Based Drug Design , 1996, J. Chem. Inf. Comput. Sci..

[127]  Christophe Meyer,et al.  4-Benzyl and 4-benzoyl-3-dimethylaminopyridin-2(1H)-ones: in vitro evaluation of new C-3-amino-substituted and C-5,6-alkyl-substituted analogues against clinically important HIV mutant strains. , 2005, Journal of medicinal chemistry.

[128]  Philip M. Dean,et al.  A branch-and-bound method for optimal atom-type assignment in de novo ligand design , 1998, J. Comput. Aided Mol. Des..

[129]  Robert C. Glen,et al.  A genetic algorithm for the automated generation of molecules within constraints , 1995, J. Comput. Aided Mol. Des..

[130]  Teruki Honma,et al.  Recent advances in de novo design strategy for practical lead identification , 2003, Medicinal research reviews.

[131]  Facundo Pérez-Giménez,et al.  Artificial Neural Networks and Linear Discriminant Analysis: A Valuable Combination in the Selection of New Antibacterial Compounds. , 2004 .

[132]  Stefan Wetzel,et al.  Interactive exploration of chemical space with Scaffold Hunter. , 2009, Nature chemical biology.

[133]  Michael M. Hann,et al.  RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry , 1998, J. Chem. Inf. Comput. Sci..

[134]  Irwin D. Kuntz,et al.  A genetic algorithm for structure-based de novo design , 2001, J. Comput. Aided Mol. Des..

[135]  G. Labesse,et al.  LEA3D: a computer-aided ligand design for structure-based drug design. , 2005, Journal of medicinal chemistry.

[136]  M. Murcko,et al.  GroupBuild: a fragment-based method for de novo drug design. , 1993, Journal of medicinal chemistry.

[137]  James B. Hendrickson,et al.  A program for the FORWARD generation of synthetic routes , 1992, J. Chem. Inf. Comput. Sci..

[138]  James B. Hendrickson,et al.  Reaction Classification and Retrieval. A Linkage Between Synthesis Generation and Reaction Databases. , 1991 .

[139]  W. Moore Maximizing discovery efficiency with a computationally driven fragment approach. , 2005, Current opinion in drug discovery & development.

[140]  Hao Zhu,et al.  Estimation of the Aqueous Solubility of Organic Molecules by the Group Contribution Approach , 2001, J. Chem. Inf. Comput. Sci..

[141]  Valerie J. Gillet,et al.  SPROUT: Recent developments in the de novo design of molecules , 1994, J. Chem. Inf. Comput. Sci..

[142]  M Rarey,et al.  Detailed analysis of scoring functions for virtual screening. , 2001, Journal of medicinal chemistry.

[143]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[144]  T. Poulos,et al.  Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. , 2009, Journal of medicinal chemistry.

[145]  Adriano D Andricopulo,et al.  Hologram QSAR model for the prediction of human oral bioavailability. , 2007, Bioorganic & medicinal chemistry.

[146]  Hans-Joachim Böhm,et al.  LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads , 1992, J. Comput. Aided Mol. Des..

[147]  Petra Schneider,et al.  Scaffold-Hopping: How Far Can You Jump , 2006 .

[148]  William L Jorgensen,et al.  From docking false-positive to active anti-HIV agent. , 2007, Journal of medicinal chemistry.

[149]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[150]  Timo Heikkilae,et al.  The first de novo designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. , 2006, Bioorganic & medicinal chemistry letters.

[151]  Philip M. Dean,et al.  4.13 – De Novo Design , 2007 .

[152]  Abraham Nudelman,et al.  De novo parallel design, synthesis and evaluation of inhibitors against the reverse transcriptase of human immunodeficiency virus type-1 and drug-resistant variants. , 2007, Journal of medicinal chemistry.

[153]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.

[154]  S. J. Campbell,et al.  Ligand binding: functional site location, similarity and docking. , 2003, Current opinion in structural biology.

[155]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[156]  Tingjun Hou,et al.  ADME Evaluation in Drug Discovery. 4. Prediction of Aqueous Solubility Based on Atom Contribution Approach , 2004, J. Chem. Inf. Model..

[157]  Nikolay V. Dokholyan,et al.  Identification and Rational Redesign of Peptide Ligands to CRIP1, A Novel Biomarker for Cancers , 2008, PLoS Comput. Biol..

[158]  Johann Gasteiger,et al.  A novel workflow for the inverse QSPR problem using multiobjective optimization , 2006, J. Comput. Aided Mol. Des..

[159]  Akiko Itai,et al.  Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation , 1991 .

[160]  Qian Liu,et al.  Tagged fragment method for evolutionary structure-based de novo lead generation and optimization. , 2007, Journal of medicinal chemistry.

[161]  David A. Pearlman,et al.  CONCEPTS: New dynamic algorithm for de novo drug suggestion , 1993, J. Comput. Chem..

[162]  T. Niwa Prediction of biological targets using probabilistic neural networks and atom-type descriptors. , 2004, Journal of medicinal chemistry.

[163]  G. Klebe,et al.  Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. , 2002, Farmaco.

[164]  J. B. Hendrickson,et al.  A two-component pericyclic reaction for synthesis of substituted benzofurans and aryl-quaternary carbon bonds. , 2000, Organic letters.

[165]  H. M. Vinkers,et al.  SYNOPSIS: SYNthesize and OPtimize System in Silico. , 2003, Journal of medicinal chemistry.

[166]  G. Whitesides,et al.  Combinatorial computational method gives new picomolar ligands for a known enzyme , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[167]  Susumu Yamanobe,et al.  Development of a Method for Evaluating Drug‐Likeness and Ease of Synthesis Using a Data Set in which Compounds Are Assigned Scores Based on Chemists′ Intuition. , 2003 .

[168]  Richard A. Lewis,et al.  Automated site-directed drug design: the concept of spacer skeletons for primary structure generation , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[169]  Robert Bywater,et al.  Improving the Odds in Discriminating "Drug-like" from "Non Drug-like" Compounds , 2000, J. Chem. Inf. Comput. Sci..

[170]  J. Apostolakis,et al.  Exhaustive docking of molecular fragments with electrostatic solvation , 1999, Proteins.

[171]  Johann Gasteiger,et al.  Computer‐Assisted Planning of Organic Syntheses: The Second Generation of Programs , 1996 .

[172]  Samo Turk,et al.  Design and synthesis of new hydroxyethylamines as inhibitors of D-alanyl-D-lactate ligase (VanA) and D-alanyl-D-alanine ligase (DdlB). , 2009, Bioorganic & medicinal chemistry letters.

[173]  Wolfgang Guba,et al.  Recent developments in de novo design and scaffold hopping. , 2008, Current opinion in drug discovery & development.

[174]  Angela Berry,et al.  Discovery and optimization of p38 inhibitors via computer-assisted drug design. , 2007, Journal of medicinal chemistry.

[175]  A Itai,et al.  Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation. , 1993, Journal of medicinal chemistry.

[176]  Tingjun Hou,et al.  Development of Reliable Aqueous Solubility Models and Their Application in Druglike Analysis , 2007, J. Chem. Inf. Model..

[177]  N. Trinajstic,et al.  Computational Chemical Graph Theory: Characterization, Enumeration and Generation of Chemical Structures by Computer Methods , 1991 .

[178]  Per Källblad,et al.  Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. , 2005, Bioorganic & medicinal chemistry letters.

[179]  Aurélien Grosdidier,et al.  Docking, virtual high throughput screening and in silico fragment-based drug design , 2009, Journal of cellular and molecular medicine.

[180]  Olivier Sperandio,et al.  Receptor-based computational screening of compound databases: the main docking-scoring engines. , 2006, Current protein & peptide science.

[181]  Alan K. Long,et al.  COMPUTER-ASSISTED SYNTHETIC ANALYSIS. SELECTION OF PROTECTIVE GROUPS FOR MULTISTEP ORGANIC SYNTHESES , 1985 .

[182]  Gisbert Schneider,et al.  Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation. , 2009, Combinatorial chemistry & high throughput screening.

[183]  Olivier Roche,et al.  A new class of histamine H3 receptor antagonists derived from ligand based design. , 2007, Bioorganic & medicinal chemistry letters.

[184]  Nathan Brown,et al.  On scaffolds and hopping in medicinal chemistry. , 2006, Mini reviews in medicinal chemistry.

[185]  Yang Liu,et al.  Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation , 2009, J. Chem. Inf. Model..

[186]  H. Kubinyi,et al.  A scoring scheme for discriminating between drugs and nondrugs. , 1998, Journal of medicinal chemistry.

[187]  Bin Liu,et al.  Structure-based design of substituted biphenyl ethylene ethers as ligands binding in the hydrophobic pocket of gp41 and blocking the helical bundle formation. , 2009, Bioorganic & medicinal chemistry letters.

[188]  Valerie J. Gillet,et al.  SPROUT: 3D Structure Generation Using Templates , 1995, J. Chem. Inf. Comput. Sci..

[189]  Luhua Lai,et al.  LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design , 2000 .

[190]  D. J. Price,et al.  Assessing scoring functions for protein-ligand interactions. , 2004, Journal of medicinal chemistry.

[191]  Valerie J. Gillet,et al.  SPROUT, HIPPO and CAESA: Tools for de novo structure generation and estimation of synthetic accessibility , 1995 .

[192]  Rainer Herges,et al.  Computer-assisted solution of chemical problems : the historical development and the present state of the art of a new discipline of chemistry , 1993 .

[193]  Nirmala Bhogal,et al.  The first de novo-designed antagonists of the human NK(2) receptor. , 2005, Journal of medicinal chemistry.

[194]  M. Davies,et al.  Structure-based design, synthesis, and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. , 2009, Journal of medicinal chemistry.

[195]  Valerie J. Gillet,et al.  De Novo Molecular Design , 2000 .

[196]  Sandor Vajda,et al.  Characterization of protein-ligand interaction sites using experimental and computational methods. , 2006, Current opinion in drug discovery & development.

[197]  Pietro Cozzini,et al.  Robust classification of "relevant" water molecules in putative protein binding sites. , 2008, Journal of medicinal chemistry.

[198]  Mark A. Murcko,et al.  GenStar: A method for de novo drug design , 1993, J. Comput. Aided Mol. Des..

[199]  W. L. Jorgensen,et al.  Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. , 2009, Journal of the American Chemical Society.

[200]  James B. Hendrickson Approaching the logic of synthesis design , 1986 .

[201]  Stewart B. Kirton,et al.  De Novo Ligand Design to Partially Flexible Active Sites: Application of the ReFlex Algorithm to Carboxypeptidase A, Acetylcholinesterase, and the Estrogen Receptor , 2008, J. Chem. Inf. Model..

[202]  Tingjun Hou,et al.  ADME evaluation in drug discovery , 2002, Journal of molecular modeling.

[203]  A. Stamford,et al.  Rational design of novel, potent piperazinone and imidazolidinone BACE1 inhibitors. , 2008, Bioorganic & medicinal chemistry letters.

[204]  María José Castro Bleda,et al.  Drugs and Nondrugs: An Effective Discrimination with Topological Methods and Artificial Neural Networks , 2003, J. Chem. Inf. Comput. Sci..

[205]  P Schneider,et al.  Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. , 2009, Current medicinal chemistry.

[206]  Daniel L Cheney,et al.  Design and SAR of selective T-type calcium channel antagonists containing a biaryl sulfonamide core. , 2008, Bioorganic & medicinal chemistry letters.

[207]  Xu Shen,et al.  Structure-based de novo design, synthesis, and biological evaluation of the indole-based PPARgamma ligands (I). , 2006, Bioorganic & medicinal chemistry letters.

[208]  William L. Jorgensen,et al.  Computer-assisted synthetic analysis. Synthetic strategies based on appendages and the use of reconnective transforms , 1976 .

[209]  Anthony Williams,et al.  Generation and Selection of Novel Estrogen Receptor Ligands Using the De Novo Structure-Based Design Tool, SkelGen , 2006, J. Chem. Inf. Model..

[210]  Ajay,et al.  Can we learn to distinguish between "drug-like" and "nondrug-like" molecules? , 1998, Journal of medicinal chemistry.

[211]  Matthias Rarey,et al.  FlexNovo: Structure‐Based Searching in Large Fragment Spaces , 2006, ChemMedChem.