Semantics of the Distributed Ontology Language: Institutes and Institutions

The Distributed Ontology Language (DOL) is a recent development within the ISO standardisation initiative 17347 Ontology Integration and Interoperability (OntoIOp). In DOL, heterogeneous and distributed ontologies can be expressed, i.e. ontologies that are made up of parts written in ontology languages based on various logics. In order to make the DOL meta-language and its semantics more easily accessible to the wider ontology community, we have developed a notion of institute which are like institutions but with signature partial orders and based on standard set-theoretic semantics rather than category theory. We give an institute-based semantics for the kernel of DOL and show that this is compatible with institutional semantics. Moreover, as it turns out, beyond their greater simplicity, institutes have some further surprising advantages over institutions.

[1]  Carsten Lutz,et al.  Conservative Extensions in Expressive Description Logics , 2007, IJCAI.

[2]  Carsten Lutz,et al.  Deciding inseparability and conservative extensions in the description logic EL , 2010, J. Symb. Comput..

[3]  Donald Sannella,et al.  Foundations of Algebraic Specification and Formal Software Development , 2012, Monographs in Theoretical Computer Science. An EATCS Series.

[4]  S. Lane Categories for the Working Mathematician , 1971 .

[5]  Dirk Walther,et al.  Chinese whispers and connected alignments , 2010, OM.

[6]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[7]  Till Mossakowski,et al.  Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design , 2010, Logica Universalis.

[8]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[9]  Boris Konev,et al.  Formal Properties of Modularisation , 2009, Modular Ontologies.

[10]  José Meseguer,et al.  General Logics , 2006 .

[11]  Till Mossakowski,et al.  Conservativity in Structured Ontologies , 2008, ECAI.

[12]  Tom Lyche,et al.  From Object-Orientation to Formal Methods , 2004, Lecture Notes in Computer Science.

[13]  Razvan Diaconescu Grothendieck Institutions , 2002, Appl. Categorical Struct..

[14]  Sofia Guerra Composition of Default Specifications , 2001, J. Log. Comput..

[15]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[16]  Pascal Hitzler,et al.  Formalizing Ontology Alignment and its Operations with Category Theory , 2006, FOIS.

[17]  Donald Sannella,et al.  Algebraic specification and formal methods for program development: what are the real problems? , 1990, Bull. EATCS.

[18]  Will Tracz,et al.  An implementation-oriented semantics for module composition , 2000 .

[19]  Till Mossakowski,et al.  Heterogeneous Specification and the Heterogeneous Tool Set , 2004 .

[20]  Donald Sannella,et al.  Specifications in an Arbitrary Institution , 1988, Inf. Comput..

[21]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[22]  Jérôme David,et al.  The Alignment API 4.0 , 2011, Semantic Web.

[23]  Nicola Guarino,et al.  WonderWeb Deliverable D18 Ontology Library , 2003 .

[24]  Till Mossakowski,et al.  The Onto-Logical Translation Graph , 2011, WoMO.

[25]  Dov M. Gabbay,et al.  Analysis and Synthesis of Logics: How to Cut and Paste Reasoning Systems , 2008 .

[26]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[27]  Till Mossakowski,et al.  The Heterogeneous Tool Set (Hets) , 2007, VERIFY.

[28]  Till Mossakowski,et al.  Heterogeneous Logical Environments for Distributed Specifications , 2008, WADT.

[29]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[30]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[31]  Christoph Lange,et al.  LoLa: A Modular Ontology of Logics, Languages, and Translations , 2012, WoMO.

[32]  Christoph Lange,et al.  Three Semantics for the Core of the Distributed Ontology Language , 2012, FOIS.

[33]  Elena Beisswanger,et al.  BioTop: An upper domain ontology for the life sciencesA description of its current structure, contents and interfaces to OBO ontologies , 2008, Appl. Ontology.

[34]  Dana S. Scott,et al.  Rules and Derived Rules , 1974 .

[35]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[36]  Martin Wirsing,et al.  Extraction of Structured Programs from Specification Proofs , 1999, WADT.

[37]  A. Rector,et al.  Relations in biomedical ontologies , 2005, Genome Biology.

[38]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[39]  Grigore Rosu,et al.  Composing Hidden Information Modules over Inclusive Institutions , 2004, Essays in Memory of Ole-Johan Dahl.

[40]  Andrzej Tarlecki,et al.  Towards Heterogeneous Specifications , 1998, FroCoS.