Large-aperture x-ray refractive lens from lithium

Lithium promises to give refractive x-ray optics the highest possible transmission, aperture and intensity gain. Room-temperature embossing of lithium with parabolic dies from polypropylene produces lenses that focus well but are not yet good enough for imaging. X-ray measurements suggest two causes of problems, one of which one can be solved easily.

[1]  P. Hurh,et al.  Li material testing - Fermilab Antiproton Source lithium collection lens , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[2]  V. G. Kohn,et al.  An exact theory of imaging with a parabolic continuously refractive X-ray lens , 2003 .

[3]  Anatoly Snigirev,et al.  Beryllium parabolic refractive x‐ray lenses , 2004 .

[4]  Irina Snigireva,et al.  Imaging by parabolic refractive lenses in the hard X-ray range , 1999 .

[5]  Richard H. Pantell,et al.  Large-aperture compound refractive lenses , 2004, SPIE Optics + Photonics.

[6]  B. Lengeler,et al.  A compound refractive lens for focusing high-energy X-rays , 1996, Nature.

[7]  H. R. Beguiristain,et al.  The Effect of Unit Lens Alignment and Surface Roughness on X-ray Compound Lens Performance , 2001 .

[8]  Richard H. Pantell,et al.  Large aperture compound lenses made of lithium , 2003 .

[9]  N. R. Pereira,et al.  Parabolic lithium refractive optics for x rays , 2004 .

[10]  N. R. Pereira,et al.  Lithium metal for x-ray refractive optics , 2001 .

[11]  Irina Snigireva,et al.  Nanofocusing Parabolic Refractive X‐Ray Lenses , 2004 .

[12]  Björn Cederström,et al.  Multi-prism x-ray lens , 2002 .

[13]  M. Krystian,et al.  In situoptical microscopy of the martensitic phase transformation of lithium , 2000 .

[14]  W. Pichl,et al.  Metallography of alkali metal single crystals , 2001 .

[15]  Anatoly Snigirev,et al.  Nanotomography based on hard x-ray microscopy with refractive lenses , 2002 .

[16]  N. R. Pereira,et al.  Refractive optics using lithium metal , 2002 .