A Janus-inspired amphichromatic system that kills two birds with one stone for operating a “DNA Janus Logic Pair” (DJLP) library

Inspired by the myth of Janus, we proposed the concept of DNA Janus Logic Pair (DJLP) and constructed the first amphichromatic system that kills two birds with one stone for operating a multifunctional DJLP library.

[1]  Joakim Andréasson,et al.  Molecular all-photonic encoder-decoder. , 2008, Journal of the American Chemical Society.

[2]  Shaojun Dong,et al.  Upconversion-chameleon-driven DNA computing: the DNA-unlocked inner-filter-effect (DU-IFE) for operating a multicolor upconversion luminescent DNA logic library and Its biosensing application , 2019, Materials Horizons.

[3]  Ehud Shapiro,et al.  Biotechnology: logic goes in vitro. , 2007, Nature nanotechnology.

[4]  Alexander Prokup,et al.  Interfacing synthetic DNA logic operations with protein outputs. , 2014, Angewandte Chemie.

[5]  Weihong Tan,et al.  Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. , 2013, Angewandte Chemie.

[6]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[7]  DNA-Mediated Proximity-Based Assembly Circuit for Actuation of Biochemical Reactions. , 2018, Angewandte Chemie.

[8]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[9]  Zhou Nie,et al.  Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. , 2017, Angewandte Chemie.

[10]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[11]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[12]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[13]  Shaojun Dong,et al.  An intelligent universal system yields double results with half the effort for engineering a DNA “Contrary Logic Pairs” library and various DNA combinatorial logic circuits , 2017 .

[14]  A. P. D. S. and,et al.  Proof-of-Principle of Molecular-Scale Arithmetic , 2000 .

[15]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[16]  Shaojun Dong,et al.  Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs. , 2016, Nanoscale.

[17]  Giacomo Bergamini,et al.  Old molecules, new concepts: [Ru(bpy)(3)](2+) as a molecular encoder-decoder. , 2009, Angewandte Chemie.

[18]  Tom F. A. de Greef,et al.  Antibody-controlled actuation of DNA-based molecular circuits , 2017, Nature Communications.

[19]  Juyoung Yoon,et al.  Molecular logic gates: the past, present and future. , 2018, Chemical Society reviews.

[20]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[21]  Jiye Shi,et al.  Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. , 2017, Journal of the American Chemical Society.

[22]  Tao Li,et al.  Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. , 2009, Journal of the American Chemical Society.

[23]  Ryan J. White,et al.  DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors , 2012 .

[24]  Shaojun Dong,et al.  A simple, label-free, electrochemical DNA parity generator/checker for error detection during data transmission based on “aptamer-nanoclaw”-modulated protein steric hindrance† †Electronic supplementary information (ESI) available: Table S1 and Fig. S1–S7. See DOI: 10.1039/c8sc02482k , 2018, Chemical science.

[25]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[26]  Shaojun Dong,et al.  A DNA-based parity generator/checker for error detection through data transmission with visual readout and an output-correction function† †Electronic supplementary information (ESI) available: Scheme S1, Tables S1–S3 and Fig. S1–S11. See DOI: 10.1039/c6sc04056j Click here for additional data file. , 2016, Chemical science.

[27]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[28]  Itamar Willner,et al.  DNAzymes for sensing, nanobiotechnology and logic gate applications. , 2008, Chemical Society reviews.

[29]  Uwe Pischel,et al.  Molecules with a sense of logic: a progress report. , 2015, Chemical Society reviews.

[30]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[31]  Lulu Qian,et al.  Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks , 2018, Nature.

[32]  D. Stefanovic,et al.  Exercises in Molecular Computing , 2014, Accounts of chemical research.

[33]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[34]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Jian Sun,et al.  Inner Filter Effect-Based Sensor for Horseradish Peroxidase and Its Application to Fluorescence Immunoassay. , 2018, ACS sensors.

[36]  Wei Liu,et al.  Highly Uniform, Bifunctional Core/Double‐Shell‐Structured β‐NaYF4:Er3+, Yb3+ @ SiO2@TiO2 Hexagonal Sub‐microprisms for High‐Performance Dye Sensitized Solar Cells , 2013, Advanced materials.

[37]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[38]  Arun Richard Chandrasekaran,et al.  Post-Assembly Stabilization of Rationally Designed DNA Crystals. , 2015, Angewandte Chemie.

[39]  Jonathan Bath,et al.  An autonomous molecular assembler for programmable chemical synthesis. , 2016, Nature chemistry.

[40]  G. Ruiter,et al.  Surface-confined assemblies and polymers for molecular logic. , 2011 .

[41]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[42]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[43]  Raphael D. Levine,et al.  A full-adder based on reconfigurable DNA-hairpin inputs and DNAzyme computing modules , 2014 .

[44]  Weihong Tan,et al.  Engineering a 3D DNA-Logic Gate Nanomachine for Bispecific Recognition and Computing on Target Cell Surfaces. , 2018, Journal of the American Chemical Society.

[45]  Terence E. Rice,et al.  New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer: The Influence of a Molecular Electric Field in the Excited State , 1995 .

[46]  Yulia V Gerasimova,et al.  Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. , 2016, Angewandte Chemie.

[47]  Julián Valero,et al.  Allosteric Control of Oxidative Catalysis by a DNA Rotaxane Nanostructure. , 2017, Journal of the American Chemical Society.

[48]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[49]  J Andréasson,et al.  Molecules for security measures: from keypad locks to advanced communication protocols. , 2018, Chemical Society reviews.

[50]  J. Andréasson,et al.  All-Photonic Multifunctional Molecular Logic Device , 2011, Journal of the American Chemical Society.

[51]  Ying Zhu,et al.  A RET-supported logic gate combinatorial library to enable modeling and implementation of intelligent logic functions , 2015, Chemical science.

[52]  Evgeny Katz,et al.  Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. , 2015, Angewandte Chemie.

[53]  Uwe Pischel,et al.  Smart molecules at work--mimicking advanced logic operations. , 2010, Chemical Society reviews.

[54]  B. Li,et al.  Programming Niche Accessibility and In Vitro Stemness with Intercellular DNA Reactions , 2018, Advanced materials.

[55]  Yan Liu,et al.  Development of an Inner Filter Effects-Based Upconversion Nanoparticles-Curcumin Nanosystem for the Sensitive Sensing of Fluoride Ion. , 2017, ACS applied materials & interfaces.

[56]  Raphael D. Levine,et al.  DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer , 2014 .

[57]  Yajing Liu,et al.  A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02079e , 2018, Chemical science.

[58]  M. Amelia,et al.  A simple unimolecular multiplexer/demultiplexer. , 2008, Angewandte Chemie.

[59]  Junlin Wen,et al.  Concatenated logic circuits based on a three-way DNA junction: a keypad-lock security system with visible readout and an automatic reset function. , 2014, Angewandte Chemie.

[60]  Hao Yan,et al.  Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. , 2017, Nature chemistry.