Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
暂无分享,去创建一个
Yan Zhou | Alexandros Beskos | Ajay Jasra | Youssef Marzouk | Kody Law | Y. Marzouk | A. Beskos | A. Jasra | K. Law | Yan Zhou
[1] Andrew M. Stuart,et al. Sequential Monte Carlo methods for Bayesian elliptic inverse problems , 2014, Stat. Comput..
[2] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[5] Kody J. H. Law,et al. Multilevel sequential Monte Carlo: Mean square error bounds under verifiable conditions , 2017 .
[6] Yuxin Chen,et al. Accelerated Dimension-Independent Adaptive Metropolis , 2015, SIAM J. Sci. Comput..
[7] Marco A. Iglesias,et al. Evaluation of Gaussian approximations for data assimilation in reservoir models , 2012, Computational Geosciences.
[8] MoralPierre Del,et al. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2017 .
[9] Yan Zhou,et al. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2016, ACM Trans. Model. Comput. Simul..
[10] D. Nychka. Data Assimilation” , 2006 .
[11] Alexey Chernov,et al. Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.
[12] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[13] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[14] W. Förstner,et al. A Metric for Covariance Matrices , 2003 .
[15] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[16] Carl Graham,et al. Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation , 2013 .
[17] A. Beskos,et al. On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.
[18] Stefan Heinrich,et al. Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..
[19] Arnaud Doucet,et al. Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo , 2011 .
[20] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[21] Qionghai Dai,et al. Weighted Subspace Distance and Its Applications to Object Recognition and Retrieval With Image Sets , 2009, IEEE Signal Processing Letters.
[22] A. Hellander. Stochastic Simulation and Monte Carlo Methods , 2009 .
[23] A. Stuart,et al. Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods , 2011 .
[24] Peter W. Glynn,et al. Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..
[25] A. GREGORY,et al. Multilevel Ensemble Transform Particle Filtering , 2015, SIAM J. Sci. Comput..
[26] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[27] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[28] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[29] Andrew M. Stuart,et al. Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.
[30] I. Johnstone,et al. Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model. , 2013, Annals of statistics.
[31] Kody J. H. Law,et al. Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..
[32] A. Doucet,et al. A lognormal central limit theorem for particle approximations of normalizing constants , 2013, 1307.0181.
[33] Ajay Jasra,et al. Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation , 2016, 1603.06381.
[34] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[35] G. Roberts,et al. Unbiased Monte Carlo: Posterior estimation for intractable/infinite-dimensional models , 2014, Bernoulli.
[36] A. Beskos,et al. Multilevel sequential Monte Carlo samplers , 2015, 1503.07259.
[37] Erik W. Grafarend,et al. Geodesy-The Challenge of the 3rd Millennium , 2003 .
[38] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[39] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..