Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals

In this article we develop a new sequential Monte Carlo method for multilevel Monte Carlo estimation. In particular, the method can be used to estimate expectations with respect to a target probabi...

[1]  Andrew M. Stuart,et al.  Sequential Monte Carlo methods for Bayesian elliptic inverse problems , 2014, Stat. Comput..

[2]  Andrew M. Stuart,et al.  Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[5]  Kody J. H. Law,et al.  Multilevel sequential Monte Carlo: Mean square error bounds under verifiable conditions , 2017 .

[6]  Yuxin Chen,et al.  Accelerated Dimension-Independent Adaptive Metropolis , 2015, SIAM J. Sci. Comput..

[7]  Marco A. Iglesias,et al.  Evaluation of Gaussian approximations for data assimilation in reservoir models , 2012, Computational Geosciences.

[8]  MoralPierre Del,et al.  Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2017 .

[9]  Yan Zhou,et al.  Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2016, ACM Trans. Model. Comput. Simul..

[10]  D. Nychka Data Assimilation” , 2006 .

[11]  Alexey Chernov,et al.  Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.

[12]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[13]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[14]  W. Förstner,et al.  A Metric for Covariance Matrices , 2003 .

[15]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[16]  Carl Graham,et al.  Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation , 2013 .

[17]  A. Beskos,et al.  On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.

[18]  Stefan Heinrich,et al.  Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..

[19]  Arnaud Doucet,et al.  Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo , 2011 .

[20]  Tiangang Cui,et al.  Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..

[21]  Qionghai Dai,et al.  Weighted Subspace Distance and Its Applications to Object Recognition and Retrieval With Image Sets , 2009, IEEE Signal Processing Letters.

[22]  A. Hellander Stochastic Simulation and Monte Carlo Methods , 2009 .

[23]  A. Stuart,et al.  Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods , 2011 .

[24]  Peter W. Glynn,et al.  Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..

[25]  A. GREGORY,et al.  Multilevel Ensemble Transform Particle Filtering , 2015, SIAM J. Sci. Comput..

[26]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[27]  Tiangang Cui,et al.  Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.

[28]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[29]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[30]  I. Johnstone,et al.  Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model. , 2013, Annals of statistics.

[31]  Kody J. H. Law,et al.  Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..

[32]  A. Doucet,et al.  A lognormal central limit theorem for particle approximations of normalizing constants , 2013, 1307.0181.

[33]  Ajay Jasra,et al.  Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation , 2016, 1603.06381.

[34]  Daniel Rudolf,et al.  On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..

[35]  G. Roberts,et al.  Unbiased Monte Carlo: Posterior estimation for intractable/infinite-dimensional models , 2014, Bernoulli.

[36]  A. Beskos,et al.  Multilevel sequential Monte Carlo samplers , 2015, 1503.07259.

[37]  Erik W. Grafarend,et al.  Geodesy-The Challenge of the 3rd Millennium , 2003 .

[38]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[39]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..