Optimal control of singular systems using the rk–butcher algorithm

In this article, the Runge–Kutta (RK)–Butcher algorithm is used to study the optimal control of linear singular systems with quadratic performance cost. The obtained discrete solutions using the RK–Butcher algorithms are compared with the exact solutions of the optimal control problem and are found to be very accurate. Stability analysis for the RK–Butcher algorithm is presented. Error graphs for discrete and exact solutions are presented in a graphical form to show the efficiency of this method. This RK–Butcher algorithm can be easily implemented in a digital computer and the solution can be obtained for any length of time. †On leave from National Institute of Technology, Thiruchirappalli, India

[1]  David J. Evans,et al.  Analysis of second order multivariate linear system using single term walsh series technique and runge kutta method , 1999, Int. J. Comput. Math..

[2]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[3]  David J. Evans,et al.  New runge kutta starters for multistep methodsStarters for multistep methods , 1999, Int. J. Comput. Math..

[4]  David J. Evans,et al.  Weighted fifth-order Runge-Kutta formulas for second-order differential equations , 1998, Int. J. Comput. Math..

[5]  David J. Evans,et al.  A new fifth order weighted runge kutta formula , 1996, Int. J. Comput. Math..

[6]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[7]  Chengming Huang,et al.  Dissipativity of Runge-Kutta methods for dynamical systems with delays , 2000 .

[8]  David J. Evans A new 4th order runge-kutta method for initial value problems with error control , 1991, Int. J. Comput. Math..

[9]  R. Mukundan,et al.  On the design of observers for generalized state space systems using singular value decomposition , 1983 .

[10]  David J. Evans,et al.  Analysis of non-linear singular system from fluid dynamics using extended runge-kutta methods , 2000, Int. J. Comput. Math..

[11]  David J. Evans,et al.  A fourth order Runge-Kutta RK(4, 4) method with error control , 1999, Int. J. Comput. Math..

[12]  R. Alexander,et al.  Runge-Kutta methods and differential-algebraic systems , 1990 .

[13]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[14]  D. Cobb,et al.  Descriptor variable systems and optimal state regulation , 1983 .

[15]  Morris Bader A comparative study of new truncation error estimates and intrinsic accuracies of some higher order Runge-Kutta algorithms , 1987, Comput. Chem..

[16]  David J. Evans,et al.  Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..

[17]  Lawrence F. Shampine,et al.  The art of writing a Runge-Kutta code. II. , 1979 .

[18]  Lawrence F. Shampine,et al.  The Art of Writing a Runge-Kutta Code, Part I , 1977 .

[19]  David J. Evans,et al.  A comparison of extended runge-kutta formulae based on variety of means to solve system of ivps , 2001, Int. J. Comput. Math..

[20]  Lawrence F. Shampine,et al.  Art of writing a Runge--Kutta code , 1976 .

[21]  L. Shampine,et al.  Some practical Runge-Kutta formulas , 1986 .

[22]  David J. Evans,et al.  A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control , 2002, Int. J. Comput. Math..

[23]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[24]  Morris Bader A new technique for the early detection of stiffness in coupled differential equations and application to standard Runge-Kutta algorithms , 1998 .

[25]  J. Butcher On Runge-Kutta processes of high order , 1964, Journal of the Australian Mathematical Society.

[26]  K. Balachandran,et al.  Optimal control of singular systems via single-term walsh series , 1992, Int. J. Comput. Math..

[27]  John C. Butcher,et al.  Towards efficient Runge-Kutta methods for stiff systems , 1990 .

[28]  Linda R. Petzold,et al.  On order reduction for Runge-Kutta methods applies to differential algebraic systems and to stiff systems of ODEs , 1990 .

[29]  R. Schilling,et al.  A note on optimal control of generalized state-space (descriptor) systems , 1986 .

[30]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .