Classical scaling and intermittency in strongly stratified Boussinesq turbulence

Classical scaling arguments of Kolmogorov, Oboukhov and Corrsin (KOC) are evaluated for turbulence strongly influenced by stable stratification. The simulations are of forced homogeneous stratified turbulence resolved on up to $8192\times 8192\times 4096$ grid points with buoyancy Reynolds numbers of $\mathit{Re}_{b}=13$ , 48 and 220. A simulation of isotropic homogeneous turbulence with a mean scalar gradient resolved on $8192^{3}$ grid points is used as a benchmark. The Prandtl number is unity. The stratified flows exhibit KOC scaling only for second-order statistics when $\mathit{Re}_{b}=220$ ; the $4/5$ law is not observed. At lower $\mathit{Re}_{b}$ , the $-5/3$ slope in the spectra occurs at wavenumbers where the bottleneck effect occurs in unstratified cases, and KOC scaling is not observed in any of the structure functions. For the probability density functions (p.d.f.s) of the scalar and kinetic energy dissipation rates, the lognormal model works as well for the stratified cases with $\mathit{Re}_{b}=48$ and 220 as it does for the unstratified case. For lower $\mathit{Re}_{b}$ , the dominance of the vertical derivatives results in the p.d.f.s of the dissipation rates tending towards bimodal. The p.d.f.s of the dissipation rates locally averaged over spheres with radius in the inertial range tend towards bimodal regardless of $\mathit{Re}_{b}$ . There is no broad scaling range, but the intermittency exponents at length scales near the Taylor length are in the range of $0.25\pm 0.05$ and $0.35\pm 0.1$ for the velocity and scalar respectively.

[1]  H. Q. Danh,et al.  Temperature dissipation fluctuations in a turbulent boundary layer , 1977 .

[2]  K. Sreenivasan,et al.  An update on the intermittency exponent in turbulence , 1993 .

[3]  Log-normality of temperature dissipation in a turbulent boundary layer , 1977 .

[4]  Kolmogorov 4∕5 law, nonlocality, and sweeping decorrelation hypothesis , 2008 .

[5]  Y. Kaneda,et al.  Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics , 2007, Journal of Fluid Mechanics.

[6]  C. W. Atta Erratum: Influence of fluctuations in local dissipation rates on turbulent scalar characteristics in the inertial subrange , 1971 .

[7]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[8]  H. K. Moffatt Statistical Fluid Mechanics: The Mechanics of Turbulence , volume 1. By A. S. M ONIN and A. M. Y AGLOM . M. I. T. Press, 1971. 769 pp. £10.50. , 1973 .

[9]  A. M. Oboukhov Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.

[10]  Katepalli R. Sreenivasan,et al.  The passive scalar spectrum and the Obukhov–Corrsin constant , 1996 .

[11]  Eric D. Siggia,et al.  Numerical study of small-scale intermittency in three-dimensional turbulence , 1981, Journal of Fluid Mechanics.

[12]  S. D. B. Kops,et al.  Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence , 2012 .

[13]  A. Obukhov,et al.  Structure of Temperature Field in Turbulent Flow , 1970 .

[14]  Michael L. Waite Stratified turbulence at the buoyancy scale , 2011 .

[15]  Mitsuo Yokokawa,et al.  Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .

[16]  A. Hussain,et al.  Structure of turbulent shear flows , 1987 .

[17]  P. Bartello,et al.  Sensitivity of stratified turbulence to the buoyancy Reynolds number , 2013, Journal of Fluid Mechanics.

[18]  C. Staquet,et al.  Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy , 2003, Journal of Fluid Mechanics.

[19]  G. R. Stegen,et al.  Measurements of the Universal Constant in Kolmogoroff's Third Hypothesis for High Reynolds Number Turbulence , 1970 .

[20]  K. Sreenivasan On the scaling of the turbulent energy dissipation rate , 1984 .

[21]  D. Hebert,et al.  Predicting turbulence in flows with strong stable stratification , 2006 .

[22]  O. Praud,et al.  Decaying grid turbulence in a strongly stratified fluid , 2005, Journal of Fluid Mechanics.

[23]  Paul A. Durbin,et al.  Statistical Theory and Modeling for Turbulent Flows: Durbin/Statistical Theory and Modeling for Turbulent Flows , 2010 .

[24]  J. Riley,et al.  Dynamics of turbulence strongly influenced by buoyancy , 2003 .

[25]  J. Chomaz,et al.  Scaling analysis and simulation of strongly stratified turbulent flows , 2007, Journal of Fluid Mechanics.

[26]  Diego Donzis,et al.  Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations , 2008 .

[27]  A. Townsend The Structure of Turbulent Shear Flow , 1975 .

[28]  S. Oncley,et al.  Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows , 1997 .

[29]  S. Corrsin On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[30]  D. Percival,et al.  Should Structure Functions Be Used to Estimate Power Laws in Turbulence? A Comparative Study , 2008 .

[31]  Diego Donzis,et al.  Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence , 2010 .

[32]  S. D. B. Kops,et al.  Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence , 2012, Journal of Fluid Mechanics.

[33]  P. Billant,et al.  Kolmogorov laws for stratified turbulence , 2012, Journal of Fluid Mechanics.

[34]  Seyed G. Saddoughi,et al.  Local isotropy in turbulent boundary layers at high Reynolds number , 1994, Journal of Fluid Mechanics.

[35]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[36]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[37]  C. Meneveau,et al.  A functional form for the energy spectrum parametrizing bottleneck and intermittency effects , 2008 .

[38]  D. Hebert,et al.  Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows , 2005 .

[39]  J. Moum,et al.  Anisotropy of turbulence in stably stratified mixing layers , 2000 .

[40]  Fourth-order statistical moments of the velocity gradient tensor in homogeneous, isotropic turbulence , 2003 .

[41]  Uwe Ehrenstein,et al.  On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability , 2012 .

[42]  Joel H. Ferziger,et al.  Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations , 2005, Journal of Fluid Mechanics.

[43]  J. Herring,et al.  Energy spectra of stably stratified turbulence , 2009, Journal of Fluid Mechanics.

[44]  Quan Zhou,et al.  Universality of local dissipation scales in buoyancy-driven turbulence. , 2010, Physical review letters.

[45]  S. M. de Bruyn Kops,et al.  A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow , 2011 .

[46]  Jean-Marc Chomaz,et al.  Self-similarity of strongly stratified inviscid flows , 2001 .

[47]  Diego Donzis,et al.  High-Reynolds-number simulation of turbulent mixing , 2005 .

[48]  P. Yeung,et al.  On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence , 1997 .

[49]  M. Gregg,et al.  Diapycnal mixing in the thermocline: A review , 1987 .

[50]  Diego Donzis,et al.  The bottleneck effect and the Kolmogorov constant in isotropic turbulence , 2010, Journal of Fluid Mechanics.

[51]  C. W. Atta,et al.  Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid , 1983, Journal of Fluid Mechanics.

[52]  James J. Riley,et al.  Stratified Turbulence: A Possible Interpretation of Some Geophysical Turbulence Measurements , 2007 .

[53]  Katepalli R. Sreenivasan,et al.  Schmidt number effects on turbulent transport with uniform mean scalar gradient , 2002 .

[54]  Z. Warhaft Passive Scalars in Turbulent Flows , 2000 .

[55]  Prasad,et al.  Multifractal nature of the dissipation field of passive scalars in fully turbulent flows. , 1988, Physical review letters.

[56]  Andreas Muschinski,et al.  Local and global statistics of clear‐air Doppler radar signals , 2004 .

[57]  P. Durbin,et al.  Statistical Theory and Modeling for Turbulent Flows , 2001 .

[58]  G. Taylor Production and Dissipation of Vorticity in a Turbulent Fluid , 1938 .

[59]  Katepalli R. Sreenivasan,et al.  An update on the energy dissipation rate in isotropic turbulence , 1998 .

[60]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[61]  A. Obukhov Some specific features of atmospheric turbulence , 1962 .

[62]  R. A. Antonia,et al.  Approach to the 4/5 law in homogeneous isotropic turbulence , 2006, Journal of Fluid Mechanics.

[63]  Tohru Nakano,et al.  Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation , 2002 .

[64]  E. Lindborg,et al.  The energy cascade in a strongly stratified fluid , 2006, Journal of Fluid Mechanics.

[65]  Jung-Tai Lin,et al.  Wakes in Stratified Fluids , 1979 .

[66]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[67]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[68]  Laurent Mydlarski,et al.  Passive scalar statistics in high-Péclet-number grid turbulence , 1998, Journal of Fluid Mechanics.