Stochastic form of the Landau-Lifshitz-Bloch equation

The Landau-Lifshitz-Bloch equation is a formulation of dynamic micromagnetics valid at all temperatures, treating both the transverse and longitudinal relaxation components important for high-temperature applications. In this paper we discuss two stochastic forms of the Landau-Lifshitz-Bloch equation. Both of them are consistent with the fluctuation-dissipation theorem. We derive the corresponding Fokker-Planck equations and show that only the stochastic form of the Landau-Lifshitz-Bloch equation proposed in the present paper is consistent with the Boltzmann distribution at high temperatures. The previously used form does not satisfy this requirement in the vicinity of the Curie temperature. We discuss the stochastic properties of both equations and present numerical simulations for distribution functions and the average magnetization value as a function of temperature.

[1]  Roy W. Chantrell,et al.  A method for the numerical simulation of the thermal magnetization fluctuations in micromagnetics , 1993 .

[2]  Denise Hinzke,et al.  Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation , 2007 .

[3]  U. Nowak,et al.  Ultrafast spin dynamics: the effect of colored noise. , 2008, Physical review letters.

[4]  U. Nowak,et al.  Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. , 2009, Physical review letters.

[5]  D. Garanin Generalized equation of motion for a ferromagnet , 1991 .

[6]  Chubykaloa,et al.  Brownian dynamics approach to interacting magnetic moments , 2009 .

[7]  F. Lázaro,et al.  Langevin-dynamics study of the dynamical properties of small magnetic particles , 1998 .

[8]  R. Chantrell,et al.  Thermal fluctuations in a pair of magnetostatically coupled particles , 1993 .

[9]  J. W. Brown Thermal fluctuation of fine ferromagnetic particles , 1979 .

[10]  Esteban Moro,et al.  Stochastic vortex dynamics in two-dimensional easy-plane ferromagnets: Multiplicative versus additive noise , 1999 .

[11]  M. Münzenberg,et al.  Evidence for thermal mechanisms in laser-induced femtosecond spin dynamics , 2010 .

[12]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[13]  Oksana Chubykalo-Fesenko,et al.  Dynamic approach for micromagnetics close to the Curie temperature , 2006 .

[14]  Noise-induced switching between vortex states with different polarization in classical two-dimensional easy-plane magnets , 1999, cond-mat/9902144.

[15]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[16]  U. Nowak,et al.  Linear and elliptical magnetization reversal close to the Curie temperature , 2009 .

[17]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[18]  U. Nowak,et al.  Domain wall motion by the magnonic spin Seebeck effect. , 2011, Physical review letters.

[19]  U. Nowak,et al.  Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation , 2009 .

[20]  D. Garanin,et al.  FOKKER-PLANCK AND LANDAU-LIFSHITZ-BLOCH EQUATIONS FOR CLASSICAL FERROMAGNETS , 1997, cond-mat/9805054.

[21]  Denise Hinzke,et al.  Towards multiscale modeling of magnetic materials : Simulations of FePt , 2008 .

[22]  Irwin Oppenheim The Langevin equation with applications in physics, chemistry and electrical engineering , 1997 .

[23]  G Grinstein,et al.  Coarse graining in micromagnetics. , 2003, Physical review letters.

[24]  H. Hamann,et al.  Thermally assisted recording beyond traditional limits , 2004 .

[25]  D. Sellmyer,et al.  Advanced magnetic materials : characterization and simulation , 2006 .