The terminal binding of base mismatched oligonucleotide d(CCGAATGAGG)2 by [Co(phen)2(DPQ)]Cl3

[1]  S. Jockusch,et al.  Inorganic-organic hybrid luminescent binary probe for DNA detection based on spin-forbidden resonance energy transfer. , 2007, Journal of the American Chemical Society.

[2]  J. Barton,et al.  Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator , 2007, Proceedings of the National Academy of Sciences.

[3]  J. Barton,et al.  DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators , 2006, Proceedings of the National Academy of Sciences.

[4]  J. Barton,et al.  A mismatch-selective bifunctional rhodium-Oregon Green conjugate: a fluorescent probe for mismatched DNA. , 2006, Journal of the American Chemical Society.

[5]  J. Barton,et al.  Electron trap for DNA-bound repair enzymes: a strategy for DNA-mediated signaling. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Yuan,et al.  Study on the Binding of Base-Mismatched Oligonucleotide d(GCGAGC)2 by Cobalt(III) Complexes , 2005 .

[7]  Jacqueline K Barton,et al.  [Ru(bpy)2(L)]Cl2: luminescent metal complexes that bind DNA base mismatches. , 2004, Inorganic chemistry.

[8]  T. Ikegami,et al.  NMR structure of the DNA decamer duplex containing double T*G mismatches of cis-syn cyclobutane pyrimidine dimer: implications for DNA damage recognition by the XPC-hHR23B complex. , 2004, Nucleic acids research.

[9]  S. Chou,et al.  The nature of actinomycin D binding to d(AACCAXYG) sequence motifs. , 2004, Nucleic acids research.

[10]  S. Chou,et al.  Unique actinomycin D binding to self-complementary d(CXYGGCCY'X'G) sequences: duplex disruption and binding to a nominally base-paired hairpin. , 2003, Nucleic acids research.

[11]  S. Chou,et al.  Solution structure of the ActD-5'-CCGTT3GTGG-3' complex: drug interaction with tandem G.T mismatches and hairpin loop backbone. , 2003, Nucleic acids research.

[12]  Ilan R. Kirsch,et al.  A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Loeb,et al.  Multiple mutations and cancer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Chou,et al.  Looped out and perpendicular: Deformation of Watson–Crick base pair associated with actinomycin D binding , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Barton,et al.  A versatile mismatch recognition agent: specific cleavage of a plasmid DNA at a single base mispair. , 1999, Biochemistry.

[16]  H. C. Yeo,et al.  DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Barton,et al.  Recognition of DNA Base Mismatches by a Rhodium Intercalator , 1997 .

[18]  L. Marnett,et al.  Endogenous DNA adducts: potential and paradox. , 1993, Chemical research in toxicology.

[19]  B. Ames,et al.  Endogenous oxidative damage of deoxycytidine in DNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. Hunter,et al.  Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Zon,et al.  NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.